Suppr超能文献

α-突触核蛋白诱导的双层脂质体管形成。

α-Synuclein-induced tubule formation in lipid bilayers.

机构信息

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

J Phys Chem B. 2011 May 19;115(19):5886-93. doi: 10.1021/jp1121917. Epub 2011 Apr 27.

Abstract

α-Synuclein is a presynaptic protein that binds to phospholipid membranes and is involved in the pathogenesis of Parkinson's disease (PD). In this paper, we describe the effects of adding wild-type α-synuclein (WT) and three familial PD mutants (A53T, A30P, and E46K) to membranes containing 15-35 mol % anionic lipid. Tubules were observed to form in the membranes to an extent that depended on the α-synuclein variant, the anionic lipid content, and the protein concentration. For all four variants, tubule formation decreased with increasing anionic lipid content. Tubules were more readily observed with A30P and E46K than with WT or A53T. The results are consistent with a model wherein the helical content of α-synuclein increases with increasing anionic lipid content, and α-synuclein conformers with low helical content have a high propensity to induce tubule formation. This work, combined with previous work from our laboratory (Pandey et al. Biophys. J. 2009, 96, 540), shows that WT adsorption of the protein has deleterious effects on the membrane when the anionic lipid concentration is less than 30 mol % (tubule formation) or greater than 40 mol % (reorganization of the bilayer, clustering of protein).

摘要

α-突触核蛋白是一种突触前蛋白,与磷脂膜结合,参与帕金森病(PD)的发病机制。在本文中,我们描述了在含有 15-35 mol%阴离子脂质的膜中添加野生型α-突触核蛋白(WT)和三种家族性 PD 突变体(A53T、A30P 和 E46K)的影响。观察到管状结构在膜中形成,其程度取决于α-突触核蛋白变体、阴离子脂质含量和蛋白质浓度。对于所有四种变体,管状结构的形成随着阴离子脂质含量的增加而减少。与 WT 或 A53T 相比,A30P 和 E46K 更容易观察到管状结构的形成。结果与以下模型一致:α-突触核蛋白的螺旋含量随着阴离子脂质含量的增加而增加,而具有低螺旋含量的α-突触核蛋白构象具有诱导管状结构形成的高倾向。这项工作与我们实验室之前的工作(Pandey 等人,《生物物理学杂志》,2009 年,96 卷,540 页)相结合,表明当阴离子脂质浓度小于 30 mol%(管状结构形成)或大于 40 mol%(双层重组、蛋白聚类)时,WT 蛋白的吸附对膜具有有害影响。

相似文献

1
α-Synuclein-induced tubule formation in lipid bilayers.
J Phys Chem B. 2011 May 19;115(19):5886-93. doi: 10.1021/jp1121917. Epub 2011 Apr 27.
2
Alpha-synuclein and familial variants affect the chain order and the thermotropic phase behavior of anionic lipid vesicles.
Biochim Biophys Acta. 2016 Sep;1864(9):1206-1214. doi: 10.1016/j.bbapap.2016.05.003. Epub 2016 May 10.
3
Association of alpha-synuclein and mutants with lipid membranes: spin-label ESR and polarized IR.
Biochemistry. 2006 Mar 14;45(10):3386-95. doi: 10.1021/bi052344d.
4
Parkinson's disease-associated mutations in α-synuclein alters its lipid-bound state.
Biophys J. 2024 Jun 18;123(12):1610-1619. doi: 10.1016/j.bpj.2024.05.002. Epub 2024 May 3.
5
Adsorption of α-synuclein to supported lipid bilayers: positioning and role of electrostatics.
ACS Chem Neurosci. 2013 Oct 16;4(10):1339-51. doi: 10.1021/cn400066t. Epub 2013 Jul 25.
7
Controlling aggregation propensity in A53T mutant of alpha-synuclein causing Parkinson's disease.
Biochem Biophys Res Commun. 2009 Sep 18;387(2):305-9. doi: 10.1016/j.bbrc.2009.07.008. Epub 2009 Jul 4.
8
The impact of the E46K mutation on the properties of alpha-synuclein in its monomeric and oligomeric states.
Biochemistry. 2007 Jun 19;46(24):7107-18. doi: 10.1021/bi7000246. Epub 2007 May 26.
9
The density of anionic lipids modulates the adsorption of α-Synuclein onto lipid membranes.
Biophys Chem. 2024 Feb;305:107143. doi: 10.1016/j.bpc.2023.107143. Epub 2023 Dec 1.

引用本文的文献

2
Monosialotetrahexosylganglioside Promotes Early Aβ42 Oligomer Formation and Maintenance.
ACS Chem Neurosci. 2022 Jul 6;13(13):1979-1991. doi: 10.1021/acschemneuro.2c00221. Epub 2022 Jun 17.
3
Alpha-Synuclein and Lipids: The Elephant in the Room?
Cells. 2021 Sep 17;10(9):2452. doi: 10.3390/cells10092452.
4
Reverse engineering Lewy bodies: how far have we come and how far can we go?
Nat Rev Neurosci. 2021 Feb;22(2):111-131. doi: 10.1038/s41583-020-00416-6. Epub 2021 Jan 11.
5
Interplay between α-synuclein amyloid formation and membrane structure.
Biochim Biophys Acta Proteins Proteom. 2019 May;1867(5):483-491. doi: 10.1016/j.bbapap.2018.09.012. Epub 2018 Oct 2.
6
Membranes as modulators of amyloid protein misfolding and target of toxicity.
Biochim Biophys Acta Biomembr. 2018 Sep;1860(9):1863-1875. doi: 10.1016/j.bbamem.2018.04.011. Epub 2018 Apr 25.
7
A Focus on the Beneficial Effects of Alpha Synuclein and a Re-Appraisal of Synucleinopathies.
Curr Protein Pept Sci. 2018;19(6):598-611. doi: 10.2174/1389203718666171117110028.
9
Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR.
J Magn Reson. 2017 Jul;280:127-139. doi: 10.1016/j.jmr.2017.02.014.
10
Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology.
Chem Soc Rev. 2017 Jul 31;46(15):4661-4708. doi: 10.1039/c6cs00542j.

本文引用的文献

1
Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins.
J Biol Chem. 2010 Oct 15;285(42):32486-93. doi: 10.1074/jbc.M110.139576. Epub 2010 Aug 6.
3
Alteration of the alpha-synuclein folding landscape by a mutation related to Parkinson's disease.
Angew Chem Int Ed Engl. 2010 May 3;49(20):3469-72. doi: 10.1002/anie.201000378.
7
Formation of complex three-dimensional structures in supported lipid bilayers.
Langmuir. 2009 Jan 6;25(1):71-4. doi: 10.1021/la8033269.
8
Alpha-synuclein and polyunsaturated fatty acids promote clathrin-mediated endocytosis and synaptic vesicle recycling.
Traffic. 2009 Feb;10(2):218-34. doi: 10.1111/j.1600-0854.2008.00853.x. Epub 2008 Oct 31.
9
Biophysical approaches to protein-induced membrane deformations in trafficking.
Curr Opin Cell Biol. 2008 Aug;20(4):476-82. doi: 10.1016/j.ceb.2008.04.004. Epub 2008 Jun 6.
10
The hydrophobic insertion mechanism of membrane curvature generation by proteins.
Biophys J. 2008 Sep;95(5):2325-39. doi: 10.1529/biophysj.108.133173. Epub 2008 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验