National Center of Scientific Research Demokritos, Institute of Biology, Athens 15310, Greece.
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):258-70. doi: 10.1016/j.jphotobiol.2011.03.008. Epub 2011 Mar 24.
With the advent of photoelectric devices (photocells, photomultipliers) in the 1930s, fluorometry of chlorophyll (Chl) a in vivo emerged as a major method in the science of photosynthesis. Early researchers employed fluorometry primarily for two tasks: to elucidate the role in photosynthesis, if any, of other plant pigments, such as Chl b, Chl c, carotenoids and phycobilins; and to use it as a convenient inverse measure of photosynthetic activity. In pursuing the latter task, it became apparent that Chl a fluorescence emission is influenced (i) by redox active Chl a molecules in the reaction center of photosystem (PS) II (photochemical quenching); (ii) by an electrochemical imbalance across the thylakoid membrane (high energy quenching); and (iii) by the size of the peripheral antennae of weakly fluorescent PSI and strongly fluorescent PSII in response to changes in the ambient light (state transitions). In this perspective we trace the historical evolution of our awareness of these concepts, particularly of the so-called 'State Transitions'.
随着光电设备(光电管、光电倍增管)在 20 世纪 30 年代的出现,活体叶绿素(Chl)a 的荧光测定法成为光合作用科学中的主要方法。早期的研究人员主要将荧光测定法用于两个任务:阐明其他植物色素(如 Chl b、Chl c、类胡萝卜素和藻胆素)在光合作用中的作用;并将其用作光合作用活性的便利逆测度。在进行后者的任务时,很明显 Chl a 荧光发射受到(i)光合作用系统(PS)II 反应中心中氧化还原活性 Chl a 分子的影响(光化学猝灭);(ii)类囊体膜上电化学失衡的影响(高能猝灭);以及(iii)周围天线的大小对弱荧光 PSI 和强荧光 PSII 的影响,以响应环境光的变化(状态转变)。在这个角度上,我们追溯了我们对这些概念的认识的历史演变,特别是所谓的“状态转变”。