Suppr超能文献

丙型肝炎病毒劫持围绕脂滴的 P 体和应激颗粒成分。

Hepatitis C virus hijacks P-body and stress granule components around lipid droplets.

机构信息

Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.

出版信息

J Virol. 2011 Jul;85(14):6882-92. doi: 10.1128/JVI.02418-10. Epub 2011 May 4.

Abstract

The microRNA miR-122 and DDX6/Rck/p54, a microRNA effector, have been implicated in hepatitis C virus (HCV) replication. In this study, we demonstrated for the first time that HCV-JFH1 infection disrupted processing (P)-body formation of the microRNA effectors DDX6, Lsm1, Xrn1, PATL1, and Ago2, but not the decapping enzyme DCP2, and dynamically redistributed these microRNA effectors to the HCV production factory around lipid droplets in HuH-7-derived RSc cells. Notably, HCV-JFH1 infection also redistributed the stress granule components GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1), ataxin-2 (ATX2), and poly(A)-binding protein 1 (PABP1) to the HCV production factory. In this regard, we found that the P-body formation of DDX6 began to be disrupted at 36 h postinfection. Consistently, G3BP1 transiently formed stress granules at 36 h postinfection. We then observed the ringlike formation of DDX6 or G3BP1 and colocalization with HCV core after 48 h postinfection, suggesting that the disruption of P-body formation and the hijacking of P-body and stress granule components occur at a late step of HCV infection. Furthermore, HCV infection could suppress stress granule formation in response to heat shock or treatment with arsenite. Importantly, we demonstrate that the accumulation of HCV RNA was significantly suppressed in DDX6, Lsm1, ATX2, and PABP1 knockdown cells after the inoculation of HCV-JFH1, suggesting that the P-body and the stress granule components are required for the HCV life cycle. Altogether, HCV seems to hijack the P-body and the stress granule components for HCV replication.

摘要

微小 RNA miR-122 和 DDX6/Rck/p54,一种微小 RNA 效应物,已被牵连到丙型肝炎病毒 (HCV) 的复制中。在这项研究中,我们首次证明 HCV-JFH1 感染破坏了微小 RNA 效应物 DDX6、Lsm1、Xrn1、PATL1 和 Ago2 的处理 (P) 体形成,但不破坏帽依赖性核酸内切酶 DCP2,并将这些微小 RNA 效应物动态重新分配到 HCV 生产工厂周围的 HuH-7 衍生的 RSc 细胞中的脂滴上。值得注意的是,HCV-JFH1 感染还将应激颗粒成分 GTP 酶激活蛋白 (SH3 结构域) 结合蛋白 1 (G3BP1)、ataxin-2 (ATX2) 和聚 (A) 结合蛋白 1 (PABP1) 重新分配到 HCV 生产工厂。在这方面,我们发现 DDX6 的 P 体形成在感染后 36 小时开始被破坏。一致地,G3BP1 在感染后 36 小时短暂形成应激颗粒。然后,我们观察到感染后 48 小时 DDX6 或 G3BP1 的环状形成和与 HCV 核心的共定位,表明 P 体形成的破坏和 P 体和应激颗粒成分的劫持发生在 HCV 感染的后期步骤。此外,HCV 感染可以抑制应激颗粒的形成,以响应热休克或用亚砷酸盐处理。重要的是,我们证明在接种 HCV-JFH1 后,DDX6、Lsm1、ATX2 和 PABP1 敲低细胞中 HCV RNA 的积累显著受到抑制,这表明 P 体和应激颗粒成分是 HCV 生命周期所必需的。总之,HCV 似乎劫持了 P 体和应激颗粒成分来进行 HCV 复制。

相似文献

1
Hepatitis C virus hijacks P-body and stress granule components around lipid droplets.
J Virol. 2011 Jul;85(14):6882-92. doi: 10.1128/JVI.02418-10. Epub 2011 May 4.
2
Hepatitis C virus infection alters P-body composition but is independent of P-body granules.
J Virol. 2012 Aug;86(16):8740-9. doi: 10.1128/JVI.07167-11. Epub 2012 Jun 6.
4
Hepatitis C virus co-opts Ras-GTPase-activating protein-binding protein 1 for its genome replication.
J Virol. 2011 Jul;85(14):6996-7004. doi: 10.1128/JVI.00013-11. Epub 2011 May 11.
7
Stress granule components G3BP1 and G3BP2 play a proviral role early in Chikungunya virus replication.
J Virol. 2015 Apr;89(8):4457-69. doi: 10.1128/JVI.03612-14. Epub 2015 Feb 4.
9
Modulation of hepatitis C virus RNA accumulation and translation by DDX6 and miR-122 are mediated by separate mechanisms.
PLoS One. 2013 Jun 24;8(6):e67437. doi: 10.1371/journal.pone.0067437. Print 2013.
10

引用本文的文献

1
RNA-binding proteins orchestrating immunity in plants.
Plant J. 2025 Sep;123(5):e70433. doi: 10.1111/tpj.70433.
2
Hijacking the Host Cell for Replication: Pro-Viral Host Factors Involved in EVA71 Infection.
Int J Mol Sci. 2025 Aug 19;26(16):7992. doi: 10.3390/ijms26167992.
3
Two Birds With One Stone: RNA Virus Strategies to Manipulate G3BP1 and Other Stress Granule Components.
Wiley Interdiscip Rev RNA. 2025 Mar-Apr;16(2):e70005. doi: 10.1002/wrna.70005.
6
A Balancing Act: The Viral-Host Battle over RNA Binding Proteins.
Viruses. 2024 Mar 20;16(3):474. doi: 10.3390/v16030474.
8
Biomolecular phase separation in stress granule assembly and virus infection.
Acta Biochim Biophys Sin (Shanghai). 2023 Jul 3;55(7):1099-1118. doi: 10.3724/abbs.2023117.
9
Stress granules: potential therapeutic targets for infectious and inflammatory diseases.
Front Immunol. 2023 May 2;14:1145346. doi: 10.3389/fimmu.2023.1145346. eCollection 2023.
10
Targeting Nup358/RanBP2 by a viral protein disrupts stress granule formation.
PLoS Pathog. 2022 Dec 1;18(12):e1010598. doi: 10.1371/journal.ppat.1010598. eCollection 2022 Dec.

本文引用的文献

1
The ESCRT system is required for hepatitis C virus production.
PLoS One. 2011 Jan 11;6(1):e14517. doi: 10.1371/journal.pone.0014517.
2
Human Ago2 is required for efficient microRNA 122 regulation of hepatitis C virus RNA accumulation and translation.
J Virol. 2011 Mar;85(5):2342-50. doi: 10.1128/JVI.02046-10. Epub 2010 Dec 22.
3
A disulfide-bonded dimer of the core protein of hepatitis C virus is important for virus-like particle production.
J Virol. 2010 Sep;84(18):9118-27. doi: 10.1128/JVI.00402-10. Epub 2010 Jun 30.
4
Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122.
J Virol. 2010 Jul;84(13):6615-25. doi: 10.1128/JVI.00417-10. Epub 2010 Apr 28.
7
Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system.
Nat Biotechnol. 2010 Feb;28(2):167-71. doi: 10.1038/nbt.1604. Epub 2010 Jan 31.
8
Poly(A)-binding protein (PABP): a common viral target.
Biochem J. 2010 Jan 27;426(1):1-12. doi: 10.1042/BJ20091571.
9
Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13517-22. doi: 10.1073/pnas.0906413106. Epub 2009 Jul 23.
10
Suppression of HIV-1 replication by microRNA effectors.
Retrovirology. 2009 Mar 9;6:26. doi: 10.1186/1742-4690-6-26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验