Suppr超能文献

铁调节蛋白 2 通过非蛋白酶体途径进行周转。

Iron regulatory protein 2 turnover through a nonproteasomal pathway.

机构信息

Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-8012, USA.

出版信息

J Biol Chem. 2011 Jul 8;286(27):23698-707. doi: 10.1074/jbc.M110.216788. Epub 2011 May 10.

Abstract

Iron regulatory protein 2 (IRP2) controls the synthesis of many proteins involved in iron metabolism, and the level of IRP2 itself is regulated by varying the rate of its degradation. The proteasome is known to mediate degradation, with specificity conferred by an iron-sensing E3 ligase. Most studies on the degradation of IRP2 have employed cells overexpressing IRP2 and also rendered iron deficient to further increase IRP2 levels. We utilized a sensitive, quantitative assay for IRP2, which allowed study of endogenous IRP2 degradation in HEK293A cells under more physiologic conditions. We found that under these conditions, the proteasome plays only a minor role in the degradation of IRP2, with almost all the IRP2 being degraded by a nonproteasomal pathway. This new pathway is calcium-dependent but is not mediated by calpain. Elevating the cellular level of IRP2 by inducing iron deficiency or by transfection causes the proteasomal pathway to account for the major fraction of IRP2 degradation. We conclude that under physiological, iron-sufficient conditions, the steady-state level of IRP2 in HEK293A cells is regulated by the nonproteasomal pathway.

摘要

铁调节蛋白 2(IRP2)控制着许多参与铁代谢的蛋白质的合成,而 IRP2 本身的水平则通过改变其降解速度来调节。蛋白酶体介导降解,特异性由铁感应 E3 连接酶赋予。大多数关于 IRP2 降解的研究都使用了过度表达 IRP2 的细胞,并使铁缺乏以进一步增加 IRP2 水平。我们利用一种灵敏的、定量的 IRP2 检测方法,在更接近生理条件的情况下研究了内源性 IRP2 在 HEK293A 细胞中的降解情况。我们发现,在这些条件下,蛋白酶体在 IRP2 的降解中只起很小的作用,几乎所有的 IRP2 都是通过非蛋白酶体途径降解的。这条新途径是钙离子依赖性的,但不是由钙蛋白酶介导的。通过诱导铁缺乏或转染来提高细胞内 IRP2 的水平,会导致蛋白酶体途径成为 IRP2 降解的主要途径。我们的结论是,在生理、铁充足的条件下,HEK293A 细胞中 IRP2 的稳态水平受非蛋白酶体途径调节。

相似文献

1
Iron regulatory protein 2 turnover through a nonproteasomal pathway.
J Biol Chem. 2011 Jul 8;286(27):23698-707. doi: 10.1074/jbc.M110.216788. Epub 2011 May 10.
2
A role for lysosomes in the turnover of human iron regulatory protein 2.
Int J Biochem Cell Biol. 2008;40(12):2826-32. doi: 10.1016/j.biocel.2008.05.015. Epub 2008 Jun 5.
5
Identification of the ubiquitin-protein ligase that recognizes oxidized IRP2.
Nat Cell Biol. 2003 Apr;5(4):336-40. doi: 10.1038/ncb952.
6
HOIL-1 is not required for iron-mediated IRP2 degradation in HEK293 cells.
Biochim Biophys Acta. 2008 Feb;1783(2):246-52. doi: 10.1016/j.bbamcr.2007.07.010. Epub 2007 Aug 9.
7
The role of endogenous heme synthesis and degradation domain cysteines in cellular iron-dependent degradation of IRP2.
Blood Cells Mol Dis. 2003 Sep-Oct;31(2):247-55. doi: 10.1016/s1079-9796(03)00161-x.
8
Oxygen and iron regulation of iron regulatory protein 2.
J Biol Chem. 2003 Oct 10;278(41):40337-42. doi: 10.1074/jbc.M302798200. Epub 2003 Jul 29.
9
Control of iron homeostasis by an iron-regulated ubiquitin ligase.
Science. 2009 Oct 30;326(5953):718-21. doi: 10.1126/science.1176333. Epub 2009 Sep 17.

引用本文的文献

1
Regulation of TRIB1 abundance in hepatocyte models in response to proteasome inhibition.
Sci Rep. 2023 Jun 8;13(1):9320. doi: 10.1038/s41598-023-36512-7.
2
Iron-responsive element-binding protein 2 plays an essential role in regulating prostate cancer cell growth.
Oncotarget. 2017 Jul 17;8(47):82231-82243. doi: 10.18632/oncotarget.19288. eCollection 2017 Oct 10.
3
Regulation of ZAT12 protein stability: The role of hydrogen peroxide.
Plant Signal Behav. 2016;11(2):e1137408. doi: 10.1080/15592324.2015.1137408.
4
Mammalian iron metabolism and its control by iron regulatory proteins.
Biochim Biophys Acta. 2012 Sep;1823(9):1468-83. doi: 10.1016/j.bbamcr.2012.05.010. Epub 2012 May 17.

本文引用的文献

1
Dual sites of protein initiation control the localization and myristoylation of methionine sulfoxide reductase A.
J Biol Chem. 2010 Jun 4;285(23):18085-94. doi: 10.1074/jbc.M110.119701. Epub 2010 Apr 5.
2
An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis.
Science. 2009 Oct 30;326(5953):722-6. doi: 10.1126/science.1176326. Epub 2009 Sep 17.
3
Control of iron homeostasis by an iron-regulated ubiquitin ligase.
Science. 2009 Oct 30;326(5953):718-21. doi: 10.1126/science.1176333. Epub 2009 Sep 17.
4
A role for lysosomes in the turnover of human iron regulatory protein 2.
Int J Biochem Cell Biol. 2008;40(12):2826-32. doi: 10.1016/j.biocel.2008.05.015. Epub 2008 Jun 5.
6
Biophysical characterisation of electrofused giant HEK293-cells as a novel electrophysiological expression system.
Biochem Biophys Res Commun. 2006 Sep 22;348(2):673-81. doi: 10.1016/j.bbrc.2006.07.112. Epub 2006 Jul 28.
7
Molecular control of vertebrate iron homeostasis by iron regulatory proteins.
Biochim Biophys Acta. 2006 Jul;1763(7):668-89. doi: 10.1016/j.bbamcr.2006.05.004. Epub 2006 May 17.
8
The role of iron regulatory proteins in mammalian iron homeostasis and disease.
Nat Chem Biol. 2006 Aug;2(8):406-14. doi: 10.1038/nchembio807.
9
Quantitation of protein on gels and blots by infrared fluorescence of Coomassie blue and Fast Green.
Anal Biochem. 2006 Mar 15;350(2):233-8. doi: 10.1016/j.ab.2005.10.048. Epub 2005 Nov 17.
10
Differential effect of calmodulin antagonists on MG132-induced mitochondrial dysfunction and cell death in PC12 cells.
Brain Res Bull. 2005 Oct 15;67(3):225-34. doi: 10.1016/j.brainresbull.2005.07.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验