Biostatistics Graduate Program, Brown University, Providence, Rhode Island, United States of America.
PLoS One. 2011 Apr 29;6(4):e19073. doi: 10.1371/journal.pone.0019073.
New high-throughput, population-based methods and next-generation sequencing capabilities hold great promise in the quest for common and rare variant discovery and in the search for "missing heritability." However, the optimal analytic strategies for approaching such data are still actively debated, representing the latest rate-limiting step in genetic progress. Since it is likely a majority of common variants of modest effect have been identified through the application of tagSNP-based microarray platforms (i.e., GWAS), alternative approaches robust to detection of low-frequency (1-5% MAF) and rare (<1%) variants are of great importance. Of direct relevance, we have available an accumulated wealth of linkage data collected through traditional genetic methods over several decades, the full value of which has not been exhausted. To that end, we compare results from two different linkage meta-analysis methods--GSMA and MSP--applied to the same set of 13 bipolar disorder and 16 schizophrenia GWLS datasets. Interestingly, we find that the two methods implicate distinct, largely non-overlapping, genomic regions. Furthermore, based on the statistical methods themselves and our contextualization of these results within the larger genetic literatures, our findings suggest, for each disorder, distinct genetic architectures may reside within disparate genomic regions. Thus, comparative linkage meta-analysis (CLMA) may be used to optimize low-frequency and rare variant discovery in the modern genomic era.
新的高通量、基于人群的方法和下一代测序技术在寻找常见和罕见变异以及寻找“缺失的遗传率”方面具有很大的潜力。然而,用于处理此类数据的最佳分析策略仍在积极争论中,这代表了遗传进展的最新限速步骤。由于通过应用基于标签 SNP 的微阵列平台(即 GWAS)已经确定了大多数具有适度影响的常见变体,因此对于低频(1-5% MAF)和罕见(<1%)变体具有强大检测能力的替代方法非常重要。直接相关的是,我们拥有几十年来通过传统遗传方法收集的大量连锁数据,这些数据的全部价值尚未得到充分利用。为此,我们比较了两种不同的连锁荟萃分析方法——GSMA 和 MSP——应用于相同的 13 个双相情感障碍和 16 个精神分裂症 GWLS 数据集的结果。有趣的是,我们发现这两种方法暗示了不同的、很大程度上不重叠的基因组区域。此外,基于统计方法本身以及我们在更大的遗传文献中对这些结果的背景化,我们的研究结果表明,对于每种疾病,不同的遗传结构可能位于不同的基因组区域内。因此,比较连锁荟萃分析(CLMA)可用于优化现代基因组时代低频和罕见变异的发现。