Affymetrix, Inc, 3420 Central Expressway, Santa Clara, CA 95051, USA.
Proc Natl Acad Sci U S A. 2011 May 31;108(22):9026-31. doi: 10.1073/pnas.1017621108. Epub 2011 May 11.
We implement a unique strategy for single molecule counting termed stochastic labeling, where random attachment of a diverse set of labels converts a population of identical DNA molecules into a population of distinct DNA molecules suitable for threshold detection. The conceptual framework for stochastic labeling is developed and experimentally demonstrated by determining the absolute and relative number of selected genes after stochastically labeling approximately 360,000 different fragments of the human genome. The approach does not require the physical separation of molecules and takes advantage of highly parallel methods such as microarray and sequencing technologies to simultaneously count absolute numbers of multiple targets. Stochastic labeling should be particularly useful for determining the absolute numbers of RNA or DNA molecules in single cells.
我们实施了一种独特的单分子计数策略,称为随机标记,其中通过随机附着多种标签,将一组相同的 DNA 分子转换为一组不同的 DNA 分子,这些分子适合阈值检测。通过随机标记大约 360000 个人类基因组的不同片段,我们开发并实验验证了随机标记的概念框架。该方法不需要分子的物理分离,并利用微阵列和测序技术等高度平行的方法,同时对多个目标的绝对数量进行计数。随机标记对于确定单细胞中 RNA 或 DNA 分子的绝对数量应该特别有用。