Suppr超能文献

手性毛细管整体印迹芯片的电化学检测用于手性拆分的方便快捷。

Convenient enantioseparation by monolithic imprinted capillary clamped in a chip with electrochemical detection.

机构信息

Key Laboratory of Analytical Chemistry for Life Science (Ministry of Education of China), Department of Chemistry, Nanjing University, Nanjing, P R China.

出版信息

Electrophoresis. 2011 Jun;32(12):1522-9. doi: 10.1002/elps.201000655. Epub 2011 May 11.

Abstract

A microchip integrated with a monolithic imprinted capillary has been manufactured for performing the chip-based capillary electrochromatographic enantioseparation. The microporous monolith anchored on the inner wall of the microchannel was prepared by in situ chemical copolymerization, and characterized with scanning electron microscopy, IR spectroscopy, and solid-state UV-vis spectroscopy. The monolithic network with high porosity gave a large surface area, good permeability, low mass-transfer resistance, and thus high separation efficiency. A portable microchip was conveniently constructed by integrating an imprinted capillary with 5-cm length as the separation channel and a carbon fiber microdisk working electrode for amperometric detection. Using L-tyrosine (L-Tyr) as the template molecule, Tyr enantiomers could be baseline separated within 55 s under the optimized preparation and separation conditions. The linear ranges for online amperometric detection of both Tyr enantiomers were from 20 to 2400 μM. The microporous monolithic chip strategy exhibited excellent separation efficiency and promising analytical application in enantioseparation. It opens an avenue for high-throughput screening of chiral compounds.

摘要

已制造出一种集成有整体式印迹毛细管的微芯片,用于进行基于芯片的毛细管电色谱对映体分离。通过原位化学共聚反应在微通道内壁上固定的微孔整体式由扫描电子显微镜、红外光谱和固态紫外可见光谱进行了表征。具有高孔隙率的整体式网络提供了大的表面积、良好的渗透性、低的传质阻力,从而实现了高的分离效率。通过将长度为 5 厘米的印迹毛细管与碳纤维微盘工作电极集成,方便地构建了便携式微芯片,用于安培检测。使用 L-酪氨酸(L-Tyr)作为模板分子,在优化的制备和分离条件下,Tyr 对映体可在 55 秒内基线分离。两种 Tyr 对映体的在线安培检测的线性范围均为 20 至 2400 μM。微孔整体式芯片策略表现出优异的分离效率和在手性化合物的高通量筛选方面有很大的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验