Suppr超能文献

可变形医学图像配准:用离散方法设定最新技术状态。

Deformable medical image registration: setting the state of the art with discrete methods.

机构信息

Computer Aided Medical Procedures, Technische Universität München, Garching, Germany.

出版信息

Annu Rev Biomed Eng. 2011 Aug 15;13:219-44. doi: 10.1146/annurev-bioeng-071910-124649.

Abstract

This review introduces a novel deformable image registration paradigm that exploits Markov random field formulation and powerful discrete optimization algorithms. We express deformable registration as a minimal cost graph problem, where nodes correspond to the deformation grid, a node's connectivity corresponds to regularization constraints, and labels correspond to 3D deformations. To cope with both iconic and geometric (landmark-based) registration, we introduce two graphical models, one for each subproblem. The two graphs share interconnected variables, leading to a modular, powerful, and flexible formulation that can account for arbitrary image-matching criteria, various local deformation models, and regularization constraints. To cope with the corresponding optimization problem, we adopt two optimization strategies: a computationally efficient one and a tight relaxation alternative. Promising results demonstrate the potential of this approach. Discrete methods are an important new trend in medical image registration, as they provide several improvements over the more traditional continuous methods. This is illustrated with several key examples where the presented framework outperforms existing general-purpose registration methods in terms of both performance and computational complexity. Our methods become of particular interest in applications where computation time is a critical issue, as in intraoperative imaging, or where the huge variation in data demands complex and application-specific matching criteria, as in large-scale multimodal population studies. The proposed registration framework, along with a graphical interface and corresponding publications, is available for download for research purposes (for Windows and Linux platforms) from http://www.mrf-registration.net.

摘要

本文介绍了一种新颖的可变形图像配准范例,该范例利用马尔可夫随机场(MRF)公式和强大的离散优化算法。我们将可变形配准表示为最小代价图问题,其中节点对应于变形网格,节点的连接对应于正则化约束,标签对应于 3D 变形。为了同时处理图像和几何(基于标记)配准,我们引入了两种图形模型,分别用于每个子问题。这两个图共享相互连接的变量,从而形成了一个模块化、强大且灵活的公式,可以考虑任意的图像匹配标准、各种局部变形模型和正则化约束。为了解决相应的优化问题,我们采用了两种优化策略:一种是计算效率高的策略,另一种是紧密松弛的替代策略。有前途的结果表明了这种方法的潜力。离散方法是医学图像配准的一个重要新趋势,因为它们相对于更传统的连续方法提供了几个改进。这在几个关键示例中得到了说明,在这些示例中,所提出的框架在性能和计算复杂度方面都优于现有的通用注册方法。在计算时间是一个关键问题的应用中,例如术中成像,或者在数据变化很大需要复杂且特定于应用的匹配标准的情况下,例如在大规模多模态人群研究中,我们的方法变得特别有趣。所提出的配准框架以及图形界面和相应的出版物,可用于研究目的(适用于 Windows 和 Linux 平台)从 http://www.mrf-registration.net 下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验