Suppr超能文献

用于多模态生物成像的荧光磁性杂化纳米探针。

Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging.

机构信息

Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235, USA.

出版信息

Nanotechnology. 2011 Jul 8;22(27):275606. doi: 10.1088/0957-4484/22/27/275606. Epub 2011 May 20.

Abstract

A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by the conjugation of superparamagnetic Fe3O4 nanoparticles and visible light emitting (∼600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. The synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive x-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) (∼800 nm) by conjugation of the superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water-soluble glutathione stabilized AgInS2/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. The observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging.

摘要

一种荧光磁性混合成像纳米探针(HINP)是通过超顺磁性 Fe3O4 纳米粒子和可见光发射(约 600nm)荧光 CdTe/CdS 量子点(QD)的共轭反应制备的。所采用的组装策略是将磁性颗粒的氧化葡聚糖壳与 QD 的谷胱甘肽配体进行共价连接。合成的 HINP 形成了稳定的水溶性胶体分散体。通过透射电子显微镜和原子力显微镜、能量色散 X 射线分析和电感耦合等离子体光学发射光谱、动态光散射分析、光吸收和光致发光光谱以及荧光成像对颗粒的结构和性能进行了表征。通过将超顺磁性纳米粒子与合成的 CdHgTe/CdS QD 共轭,将纳米探针的发光成像区域扩展到近红外(NIR)(约 800nm)。在 HINP 中,基于镉和汞的 QD 可以很容易地被新型水溶性谷胱甘肽稳定的 AgInS2/ZnS QD 取代,从而提供一类新的无镉多模态成像剂。观察到的荧光磁性纳米复合材料的近红外光致发光支持它们用于生物成像。所开发的 HINP 为光学和磁共振成像的同时提供了双成像通道。

相似文献

1
Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging.
Nanotechnology. 2011 Jul 8;22(27):275606. doi: 10.1088/0957-4484/22/27/275606. Epub 2011 May 20.
2
Multimodal imaging of dendritic cells using a novel hybrid magneto-optical nanoprobe.
Nanomedicine. 2011 Aug;7(4):489-96. doi: 10.1016/j.nano.2010.12.004. Epub 2011 Jan 5.
3
4
Direct one-pot synthesis of glutathione capped hydrophilic FePt-CdS nanoprobe for efficient bimodal imaging application.
Mater Sci Eng C Mater Biol Appl. 2017 Mar 1;72:415-424. doi: 10.1016/j.msec.2016.11.077. Epub 2016 Nov 23.
7
Photostable water-dispersible NIR-emitting CdTe/CdS/ZnS core-shell-shell quantum dots for high-resolution tumor targeting.
Biomaterials. 2013 Dec;34(37):9509-18. doi: 10.1016/j.biomaterials.2013.09.005. Epub 2013 Sep 17.
9
Oligomeric nanoparticles functionalized with NIR-emitting CdTe/CdS QDs and folate for tumor-targeted imaging.
Biomaterials. 2014 Sep;35(27):7881-6. doi: 10.1016/j.biomaterials.2014.05.071. Epub 2014 Jun 20.
10
Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution.
Spectrochim Acta A Mol Biomol Spectrosc. 2008 Mar;69(3):1044-52. doi: 10.1016/j.saa.2007.06.021. Epub 2007 Jun 23.

引用本文的文献

1
Bioimaging Probes Based on Magneto-Fluorescent Nanoparticles.
Pharmaceutics. 2023 Feb 17;15(2):686. doi: 10.3390/pharmaceutics15020686.
2
Tailor made magnetic nanolights: fabrication to cancer theranostics applications.
Nanoscale Adv. 2021 Oct 25;3(24):6762-6796. doi: 10.1039/d1na00447f. eCollection 2021 Dec 7.
3
A Combinatorial Approach for the Fabrication of Magneto-Optical Hybrid Nanoparticles.
Int J Nanomedicine. 2019 Dec 12;14:9855-9863. doi: 10.2147/IJN.S228962. eCollection 2019.
4
A cell-penetrating protein designed for bimodal fluorescence and magnetic resonance imaging.
Chem Sci. 2015 Nov 1;6(11):6607-6613. doi: 10.1039/c5sc01925g. Epub 2015 Aug 11.
5
Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging.
Biophys Rev. 2012 Dec;4(4):313-322. doi: 10.1007/s12551-012-0076-9. Epub 2012 Apr 12.
6
Future of the Renal Biopsy: Time to Change the Conventional Modality Using Nanotechnology.
Int J Biomed Imaging. 2017;2017:6141734. doi: 10.1155/2017/6141734. Epub 2017 Feb 19.
7
Long-term prevalence of NIRF-labeled magnetic nanoparticles for the diagnostic and intraoperative imaging of inflammation.
Nanotoxicology. 2016;10(1):20-31. doi: 10.3109/17435390.2014.1000413. Epub 2015 Feb 17.

本文引用的文献

1
Magnetic nanoparticles for imaging dendritic cells.
Magn Reson Med. 2010 May;63(5):1383-90. doi: 10.1002/mrm.22313.
2
Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment.
Chem Commun (Camb). 2010 Mar 28;46(12):2082-4. doi: 10.1039/b924186h. Epub 2010 Feb 19.
3
Magnetic quantum dots for multimodal imaging.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Sep-Oct;1(5):475-91. doi: 10.1002/wnan.14.
4
Upconverting luminescent nanomaterials: application to in vivo bioimaging.
Chem Commun (Camb). 2009 Jul 28(28):4188-90. doi: 10.1039/b905927j. Epub 2009 Jun 12.
6
Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots: the effect of ligands.
J Colloid Interface Sci. 2009 May 15;333(2):690-8. doi: 10.1016/j.jcis.2009.01.008. Epub 2009 Feb 11.
8
Fluorescent-magnetic hybrid nanostructures: preparation, properties, and applications in biology.
IEEE Trans Nanobioscience. 2007 Dec;6(4):298-308. doi: 10.1109/tnb.2007.908989.
9
Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore.
J Am Chem Soc. 2007 Oct 17;129(41):12388-9. doi: 10.1021/ja0750470. Epub 2007 Sep 21.
10
In vivo imaging of siRNA delivery and silencing in tumors.
Nat Med. 2007 Mar;13(3):372-7. doi: 10.1038/nm1486. Epub 2007 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验