Suppr超能文献

遗传和分子分析揭示了细菌蛋白糖基化系统中聚糖合成的进化轨迹。

Genetic and molecular analyses reveal an evolutionary trajectory for glycan synthesis in a bacterial protein glycosylation system.

机构信息

Center for Molecular Biology and Neuroscience and Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway.

出版信息

Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9643-8. doi: 10.1073/pnas.1103321108. Epub 2011 May 23.

Abstract

Although protein glycosylation systems are becoming widely recognized in bacteria, little is known about the mechanisms and evolutionary forces shaping glycan composition. Species within the genus Neisseria display remarkable glycoform variability associated with their O-linked protein glycosylation (pgl) systems and provide a well developed model system to study these phenomena. By examining the potential influence of two ORFs linked to the core pgl gene locus, we discovered that one of these, previously designated as pglH, encodes a glucosyltransferase that generates unique disaccharide products by using polyprenyl diphosphate-linked monosaccharide substrates. By defining the function of PglH in the glycosylation pathway, we identified a metabolic conflict related to competition for a shared substrate between the opposing glycosyltransferases PglA and PglH. Accordingly, we propose that the presence of a stereotypic, conserved deletion mutation inactivating pglH in strains of Neisseria gonorrhoeae, Neisseria meningitidis, and related commensals, reflects a resolution of this conflict with the consequence of reduced glycan diversity. This model of genetic détente is supported by the characterization of pglH "missense" alleles encoding proteins devoid of activity or reduced in activity such that they cannot exert their effect in the presence of PglA. Thus, glucose-containing glycans appear to be a trait undergoing regression at the genus level. Together, these findings document a role for intrinsic genetic interactions in shaping glycan evolution in protein glycosylation systems.

摘要

尽管蛋白质糖基化系统在细菌中得到了广泛的认识,但对于塑造聚糖组成的机制和进化力量知之甚少。奈瑟氏菌属内的物种表现出与它们的 O-连接蛋白糖基化 (pgl) 系统相关的显著糖型变异性,为研究这些现象提供了一个成熟的模型系统。通过检查与核心 pgl 基因座相关的两个 ORF 的潜在影响,我们发现其中一个之前被指定为 pglH,它编码一种葡萄糖基转移酶,通过使用聚异戊二烯二磷酸连接的单糖底物产生独特的二糖产物。通过定义 PglH 在糖基化途径中的功能,我们确定了与 opposing glycosyltransferases PglA 和 PglH 之间共享底物竞争相关的代谢冲突。因此,我们提出,在淋病奈瑟菌、脑膜炎奈瑟菌和相关共生菌中,pglH 存在一种典型的、保守的缺失突变,使 pglH 失活,这反映了这种冲突的解决,其结果是聚糖多样性降低。这种遗传和解的模型得到了 pglH“错义”等位基因的特征的支持,这些等位基因编码缺乏活性或活性降低的蛋白质,以至于在 PglA 存在的情况下它们无法发挥作用。因此,含有葡萄糖的聚糖似乎是一个在属水平上发生退化的特征。总之,这些发现证明了内在遗传相互作用在蛋白质糖基化系统中塑造聚糖进化中的作用。

相似文献

引用本文的文献

1
Sweet complexity: -linked protein glycosylation in pathogenic .甜蜜的复杂性:致病 中的 -连接蛋白糖基化。
Front Cell Infect Microbiol. 2024 May 14;14:1407863. doi: 10.3389/fcimb.2024.1407863. eCollection 2024.
9
Phase-Variable Genotypes Sweetened by Glycosylation Phenotypes.糖基化表型修饰的相变体基因型。
J Bacteriol. 2018 Jul 25;200(16). doi: 10.1128/JB.00316-18. Print 2018 Aug 15.

本文引用的文献

3
The variation of O antigens in gram-negative bacteria.革兰氏阴性菌中O抗原的变异
Subcell Biochem. 2010;53:123-52. doi: 10.1007/978-90-481-9078-2_6.
5
Motility and flagellar glycosylation in Clostridium difficile.艰难梭菌中的运动性与鞭毛糖基化
J Bacteriol. 2009 Nov;191(22):7050-62. doi: 10.1128/JB.00861-09. Epub 2009 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验