U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, USA.
Risk Anal. 2011 Jun;31(6):908-22. doi: 10.1111/j.1539-6924.2011.01629.x. Epub 2011 May 26.
The U.S. Environmental Protection Agency undertook a case study in the Detroit metropolitan area to test the viability of a new multipollutant risk-based (MP/RB) approach to air quality management, informed by spatially resolved air quality, population, and baseline health data. The case study demonstrated that the MP/RB approach approximately doubled the human health benefits achieved by the traditional approach while increasing cost less than 20%--moving closer to the objective of Executive Order 12866 to maximize net benefits. Less well understood is how the distribution of health benefits from the MP/RB and traditional strategies affect the existing inequalities in air-pollution-related risks in Detroit. In this article, we identify Detroit populations that may be both most susceptible to air pollution health impacts (based on local-scale baseline health data) and most vulnerable to air pollution (based on fine-scale PM(2.5) air quality modeling and socioeconomic characteristics). Using these susceptible/vulnerable subpopulation profiles, we assess the relative impacts of each control strategy on risk inequality, applying the Atkinson Index (AI) to quantify health risk inequality at baseline and with either risk management approach. We find that the MP/RB approach delivers greater air quality improvements among these subpopulations while also generating substantial benefits among lower-risk populations. Applying the AI, we confirm that the MP/RB strategy yields less PM(2.5) mortality and asthma hospitalization risk inequality than the traditional approach. We demonstrate the value of this approach to policymakers as they develop cost-effective air quality management plans that maximize risk reduction while minimizing health inequality.
美国环境保护署(EPA)在底特律大都市区进行了一项案例研究,以测试新的多污染物风险为本(MP/RB)空气质量管理方法的可行性,该方法以空间分辨率空气质量、人口和基线健康数据为依据。该案例研究表明,MP/RB 方法使人类健康效益增加了一倍左右,而成本增加不到 20%,这更接近执行 12866 号行政命令以实现最大净效益的目标。但不太清楚的是,MP/RB 和传统策略的健康效益分配如何影响底特律与空气污染相关的风险中的现有不平等现象。在本文中,我们确定了底特律的一些人群,这些人群可能最容易受到空气污染对健康的影响(基于当地基线健康数据),也最容易受到空气污染的影响(基于细尺度 PM(2.5)空气质量建模和社会经济特征)。我们使用这些易感/脆弱亚人群档案,评估了每种控制策略对风险不平等的相对影响,应用阿特金森指数(AI)来量化基线和两种风险管理方法下的健康风险不平等。我们发现,MP/RB 方法在这些亚人群中提供了更大的空气质量改善,同时也为低风险人群带来了巨大的效益。应用 AI,我们确认 MP/RB 策略比传统策略产生的 PM(2.5)死亡率和哮喘住院风险不平等更小。我们向政策制定者展示了这种方法的价值,因为他们制定了具有成本效益的空气质量管理计划,这些计划最大限度地减少了健康不平等,同时最大限度地降低了风险。