OHBA (Oxford Centre for Human Brain Activity), University of Oxford, Oxford, UK.
Neuroimage. 2011 Aug 15;57(4):1466-79. doi: 10.1016/j.neuroimage.2011.04.041. Epub 2011 May 8.
Beamformers are a commonly used method for doing source localization from magnetoencephalography (MEG) data. A key ingredient in a beamformer is the estimation of the data covariance matrix. When the noise levels are high, or when there is only a small amount of data available, the data covariance matrix is estimated poorly and the signal-to-noise ratio (SNR) of the beamformer output degrades. One solution to this is to use regularization whereby the diagonal of the covariance matrix is amplified by a pre-specified amount. However, this provides improvements at the expense of a loss in spatial resolution, and the parameter controlling the amount of regularization must be chosen subjectively. In this paper, we introduce a method that provides an adaptive solution to this problem by using a Bayesian Principle Component Analysis (PCA). This provides an estimate of the data covariance matrix to give a data-driven, non-arbitrary solution to the trade-off between the spatial resolution and the SNR of the beamformer output. This also provides a method for determining when the quality of the data covariance estimate maybe under question. We apply the approach to simulated and real MEG data, and demonstrate the way in which it can automatically adapt the regularization to give good performance over a range of noise and signal levels.
波束形成器是从脑磁图 (MEG) 数据进行源定位的常用方法。波束形成器的一个关键组成部分是数据协方差矩阵的估计。当噪声水平较高或只有少量数据可用时,数据协方差矩阵的估计会很差,波束形成器输出的信噪比 (SNR) 会降低。解决此问题的一种方法是使用正则化,通过该正则化,将协方差矩阵的对角线放大指定的量。但是,这是以牺牲空间分辨率为代价的,并且必须主观地选择控制正则化量的参数。在本文中,我们介绍了一种通过使用贝叶斯主成分分析 (PCA) 来为该问题提供自适应解决方案的方法。该方法提供了数据协方差矩阵的估计,从而为波束形成器输出的空间分辨率和 SNR 之间的折衷提供了数据驱动的、非任意的解决方案。这还提供了一种确定数据协方差估计质量是否存在问题的方法。我们将该方法应用于模拟和真实的 MEG 数据,并演示了它如何能够自动适应正则化,从而在一系列噪声和信号水平下都能获得良好的性能。