Suppr超能文献

基于贝叶斯主成分分析的脑磁图束形成用于自适应数据协方差矩阵正则化。

MEG beamforming using Bayesian PCA for adaptive data covariance matrix regularization.

机构信息

OHBA (Oxford Centre for Human Brain Activity), University of Oxford, Oxford, UK.

出版信息

Neuroimage. 2011 Aug 15;57(4):1466-79. doi: 10.1016/j.neuroimage.2011.04.041. Epub 2011 May 8.

Abstract

Beamformers are a commonly used method for doing source localization from magnetoencephalography (MEG) data. A key ingredient in a beamformer is the estimation of the data covariance matrix. When the noise levels are high, or when there is only a small amount of data available, the data covariance matrix is estimated poorly and the signal-to-noise ratio (SNR) of the beamformer output degrades. One solution to this is to use regularization whereby the diagonal of the covariance matrix is amplified by a pre-specified amount. However, this provides improvements at the expense of a loss in spatial resolution, and the parameter controlling the amount of regularization must be chosen subjectively. In this paper, we introduce a method that provides an adaptive solution to this problem by using a Bayesian Principle Component Analysis (PCA). This provides an estimate of the data covariance matrix to give a data-driven, non-arbitrary solution to the trade-off between the spatial resolution and the SNR of the beamformer output. This also provides a method for determining when the quality of the data covariance estimate maybe under question. We apply the approach to simulated and real MEG data, and demonstrate the way in which it can automatically adapt the regularization to give good performance over a range of noise and signal levels.

摘要

波束形成器是从脑磁图 (MEG) 数据进行源定位的常用方法。波束形成器的一个关键组成部分是数据协方差矩阵的估计。当噪声水平较高或只有少量数据可用时,数据协方差矩阵的估计会很差,波束形成器输出的信噪比 (SNR) 会降低。解决此问题的一种方法是使用正则化,通过该正则化,将协方差矩阵的对角线放大指定的量。但是,这是以牺牲空间分辨率为代价的,并且必须主观地选择控制正则化量的参数。在本文中,我们介绍了一种通过使用贝叶斯主成分分析 (PCA) 来为该问题提供自适应解决方案的方法。该方法提供了数据协方差矩阵的估计,从而为波束形成器输出的空间分辨率和 SNR 之间的折衷提供了数据驱动的、非任意的解决方案。这还提供了一种确定数据协方差估计质量是否存在问题的方法。我们将该方法应用于模拟和真实的 MEG 数据,并演示了它如何能够自动适应正则化,从而在一系列噪声和信号水平下都能获得良好的性能。

相似文献

1
MEG beamforming using Bayesian PCA for adaptive data covariance matrix regularization.
Neuroimage. 2011 Aug 15;57(4):1466-79. doi: 10.1016/j.neuroimage.2011.04.041. Epub 2011 May 8.
2
Modified covariance beamformer for solving MEG inverse problem in the environment with correlated sources.
Neuroimage. 2021 Mar;228:117677. doi: 10.1016/j.neuroimage.2020.117677. Epub 2020 Dec 29.
3
Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.
Neuroimage. 2015 Mar;108:328-42. doi: 10.1016/j.neuroimage.2014.12.040. Epub 2014 Dec 23.
4
Signal space separation beamformer.
Brain Topogr. 2010 Jun;23(2):128-33. doi: 10.1007/s10548-009-0120-7. Epub 2009 Nov 27.
5
Source localization with MEG data: A beamforming approach based on covariance thresholding.
Biometrics. 2014 Mar;70(1):121-31. doi: 10.1111/biom.12123. Epub 2013 Dec 18.
6
Source imaging method based on diagonal covariance bases and its applications to OPM-MEG.
Neuroimage. 2024 Oct 1;299:120851. doi: 10.1016/j.neuroimage.2024.120851. Epub 2024 Sep 12.
8
Bayesian Adaptive Beamformer for Robust Electromagnetic Brain Imaging of Correlated Sources in High Spatial Resolution.
IEEE Trans Med Imaging. 2023 Sep;42(9):2502-2512. doi: 10.1109/TMI.2023.3256963. Epub 2023 Aug 31.
9
Source localization scale correction for Beamformer analysis.
J Neurosci Methods. 2016 Nov 1;273:10-19. doi: 10.1016/j.jneumeth.2016.07.013. Epub 2016 Jul 22.
10
Optimising beamformer regions of interest analysis.
Neuroimage. 2014 Nov 15;102 Pt 2:945-54. doi: 10.1016/j.neuroimage.2014.08.019. Epub 2014 Aug 16.

引用本文的文献

1
Magnetoencephalographic source localization and reconstruction via deep learning.
Front Neurosci. 2025 Jul 21;19:1578473. doi: 10.3389/fnins.2025.1578473. eCollection 2025.
2
Lifespan oscillatory dynamics in lexical production: A population-based MEG resting-state analysis.
Imaging Neurosci (Camb). 2025 Apr 28;3. doi: 10.1162/imag_a_00551. eCollection 2025.
3
Human motor cortical gamma activity relates to GABAergic intracortical inhibition and motor learning.
Imaging Neurosci (Camb). 2025 Apr 24;3. doi: 10.1162/imag_a_00538. eCollection 2025.
4
Towards a more robust non-invasive assessment of functional connectivity.
Imaging Neurosci (Camb). 2024 Mar 28;2. doi: 10.1162/imag_a_00119. eCollection 2024.
5
Changes in sensorimotor network dynamics in resting-state recordings in Parkinson's disease.
Brain Commun. 2025 Jul 23;7(4):fcaf282. doi: 10.1093/braincomms/fcaf282. eCollection 2025.
6
FREQ-NESS Reveals the Dynamic Reconfiguration of Frequency-Resolved Brain Networks During Auditory Stimulation.
Adv Sci (Weinh). 2025 May;12(20):e2413195. doi: 10.1002/advs.202413195. Epub 2025 Apr 10.
7
Multilevel irreversibility reveals higher-order organization of nonequilibrium interactions in human brain dynamics.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2408791122. doi: 10.1073/pnas.2408791122. Epub 2025 Mar 7.
8
Post-stroke changes in brain structure and function can both influence acute upper limb function and subsequent recovery.
Neuroimage Clin. 2025;45:103754. doi: 10.1016/j.nicl.2025.103754. Epub 2025 Feb 13.
9
Disrupted working memory event-related network dynamics in multiple sclerosis.
Commun Biol. 2024 Nov 29;7(1):1592. doi: 10.1038/s42003-024-07283-2.

本文引用的文献

1
Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients.
Neuroimage. 2010 May 1;50(4):1578-88. doi: 10.1016/j.neuroimage.2009.12.115. Epub 2010 Jan 4.
2
Simultaneous MEG and intracranial EEG recordings during attentive reading.
Neuroimage. 2009 May 1;45(4):1289-304. doi: 10.1016/j.neuroimage.2009.01.017. Epub 2009 Jan 24.
3
Effective electromagnetic noise cancellation with beamformers and synthetic gradiometry in shielded and partly shielded environments.
J Neurosci Methods. 2009 Mar 30;178(1):120-7. doi: 10.1016/j.jneumeth.2008.12.006. Epub 2008 Dec 11.
4
Bayesian analysis of neuroimaging data in FSL.
Neuroimage. 2009 Mar;45(1 Suppl):S173-86. doi: 10.1016/j.neuroimage.2008.10.055. Epub 2008 Nov 13.
5
Optimising experimental design for MEG beamformer imaging.
Neuroimage. 2008 Feb 15;39(4):1788-802. doi: 10.1016/j.neuroimage.2007.09.050. Epub 2007 Oct 10.
6
Multiple sparse priors for the M/EEG inverse problem.
Neuroimage. 2008 Feb 1;39(3):1104-20. doi: 10.1016/j.neuroimage.2007.09.048. Epub 2007 Oct 10.
8
Beamformer reconstruction of correlated sources using a modified source model.
Neuroimage. 2007 Feb 15;34(4):1454-65. doi: 10.1016/j.neuroimage.2006.11.012. Epub 2006 Dec 29.
9
Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?
Neuroimage. 2007 Jan 1;34(1):144-55. doi: 10.1016/j.neuroimage.2006.09.018. Epub 2006 Oct 27.
10
Controlled Support MEG imaging.
Neuroimage. 2006 Nov 15;33(3):878-85. doi: 10.1016/j.neuroimage.2006.07.023. Epub 2006 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验