Suppr超能文献

血红素-非血红素二铁中心中单硝酰基配合物的光谱特性在肌红蛋白支架内 (Fe(B)Mbs):与硝酸还原酶的反硝化作用有关。

Spectroscopic characterization of mononitrosyl complexes in heme--nonheme diiron centers within the myoglobin scaffold (Fe(B)Mbs): relevance to denitrifying NO reductase.

机构信息

Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Beaverton, Oregon 97006, United States.

出版信息

Biochemistry. 2011 Jul 5;50(26):5939-47. doi: 10.1021/bi200409a. Epub 2011 Jun 14.

Abstract

Denitrifying NO reductases are evolutionarily related to the superfamily of heme--copper terminal oxidases. These transmembrane protein complexes utilize a heme-nonheme diiron center to reduce two NO molecules to N(2)O. To understand this reaction, the diiron site has been modeled using sperm whale myoglobin as a scaffold and mutating distal residues Leu-29 and Phe-43 to histidines and Val-68 to a glutamic acid to create a nonheme Fe(B) site. The impact of incorporation of metal ions at this engineered site on the reaction of the ferrous heme with one NO was examined by UV-vis absorption, EPR, resonance Raman, and FTIR spectroscopies. UV--vis absorption and resonance Raman spectra demonstrate that the first NO molecule binds to the ferrous heme, but while the apoproteins and Cu(I)- or Zn(II)-loaded proteins show characteristic EPR signatures of S = 1/2 six-coordinate heme {FeNO}(7) species that can be observed at liquid nitrogen temperature, the Fe(II)-loaded proteins are EPR silent at ≥30 K. Vibrational modes from the heme [Fe-N-O] unit are identified in the RR and FTIR spectra using (15)NO and (15)N(18)O. The apo and Cu(I)-bound proteins exhibit ν(FeNO) and ν(NO) that are only marginally distinct from those reported for native myoglobin. However, binding of Fe(II) at the Fe(B) site shifts the heme ν(FeNO) by 17 cm(-1) and the ν(NO) by -50 cm(-1) to 1549 cm(-1). This low ν(NO) is without precedent for a six-coordinate heme {FeNO}(7) species and suggests that the NO group adopts a strong nitroxyl character stabilized by electrostatic interaction with the nearby nonheme Fe(II). Detection of a similarly low ν(NO) in the Zn(II)-loaded protein supports this interpretation.

摘要

反硝化硝酸盐还原酶在进化上与血红素-铜末端氧化酶超家族有关。这些跨膜蛋白复合物利用血红素-非血红素双核铁中心将两个 NO 分子还原为 N(2)O。为了理解这个反应,使用抹香鲸肌红蛋白作为支架模拟双核铁位点,并将远端残基 Leu-29 和 Phe-43 突变为组氨酸和 Val-68 为谷氨酸,以创建非血红素 Fe(B)位点。通过紫外-可见吸收、EPR、共振拉曼和 FTIR 光谱研究了在该工程位点掺入金属离子对亚铁血红素与一个 NO 反应的影响。紫外-可见吸收和共振拉曼光谱表明,第一个 NO 分子与亚铁血红素结合,但在脱蛋白和 Cu(I)-或 Zn(II)-负载的蛋白质中,观察到特征性的 EPR 信号 S = 1/2 六配位血红素 {FeNO}(7)物种,可以在液氮温度下观察到,而 Fe(II)-负载的蛋白质在≥30 K 时 EPR 沉默。在 RR 和 FTIR 光谱中使用 (15)NO 和 (15)N(18)O 鉴定来自血红素的 [Fe-N-O]单元的振动模式。脱蛋白和 Cu(I)-结合的蛋白质表现出 ν(FeNO)和 ν(NO),它们仅与天然肌红蛋白报道的那些略有不同。然而,Fe(B)位点上 Fe(II)的结合将血红素 ν(FeNO)移动 17 cm(-1),ν(NO)移动-50 cm(-1)至 1549 cm(-1)。这种低 ν(NO)在六配位血红素 {FeNO}(7)物种中是前所未有的,表明 NO 基团采用强硝酰基特征,由与附近非血红素 Fe(II)的静电相互作用稳定。在 Zn(II)-负载的蛋白质中检测到类似的低 ν(NO)支持这种解释。

相似文献

5
Vibrational analysis of mononitrosyl complexes in hemerythrin and flavodiiron proteins: relevance to detoxifying NO reductase.
J Am Chem Soc. 2012 Apr 18;134(15):6878-84. doi: 10.1021/ja301812p. Epub 2012 Apr 9.
6
Nitric Oxide Reductase Activity in Heme-Nonheme Binuclear Engineered Myoglobins through a One-Electron Reduction Cycle.
J Am Chem Soc. 2018 Dec 19;140(50):17389-17393. doi: 10.1021/jacs.8b11037. Epub 2018 Dec 6.
9
FTIR and resonance Raman studies of nitric oxide binding to H93G cavity mutants of myoglobin.
Biochemistry. 2001 Dec 11;40(49):15047-56. doi: 10.1021/bi011440l.

引用本文的文献

1
Mechanism of substrate inhibition in cytochrome-c dependent NO reductases from denitrifying bacteria (cNORs).
J Inorg Biochem. 2022 Jun;231:111781. doi: 10.1016/j.jinorgbio.2022.111781. Epub 2022 Mar 1.
2
Kinetic mechanisms for O binding to myoglobins and hemoglobins.
Mol Aspects Med. 2022 Apr;84:101024. doi: 10.1016/j.mam.2021.101024. Epub 2021 Sep 17.
4
Nitric Oxide Reductase Activity in Heme-Nonheme Binuclear Engineered Myoglobins through a One-Electron Reduction Cycle.
J Am Chem Soc. 2018 Dec 19;140(50):17389-17393. doi: 10.1021/jacs.8b11037. Epub 2018 Dec 6.
5
Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase.
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6195-6200. doi: 10.1073/pnas.1720298115. Epub 2018 May 25.
6
Lewis Acid Activation of the Ferrous Heme-NO Fragment toward the N-N Coupling Reaction with NO To Generate NO.
J Am Chem Soc. 2018 Mar 28;140(12):4204-4207. doi: 10.1021/jacs.7b13681. Epub 2018 Mar 15.

本文引用的文献

1
Structural basis of biological N2O generation by bacterial nitric oxide reductase.
Science. 2010 Dec 17;330(6011):1666-70. doi: 10.1126/science.1195591. Epub 2010 Nov 25.
3
Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin.
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8581-6. doi: 10.1073/pnas.1000526107. Epub 2010 Apr 26.
4
Role of copper ion in regulating ligand binding in a myoglobin-based cytochrome C oxidase model.
J Am Chem Soc. 2010 Feb 10;132(5):1598-605. doi: 10.1021/ja907777f.
5
Rational design of a structural and functional nitric oxide reductase.
Nature. 2009 Dec 24;462(7276):1079-82. doi: 10.1038/nature08620. Epub 2009 Nov 25.
8
Metabolism of nitric oxide by Neisseria meningitidis modifies release of NO-regulated cytokines and chemokines by human macrophages.
Microbes Infect. 2007 Jul;9(8):981-7. doi: 10.1016/j.micinf.2007.04.002. Epub 2007 Apr 11.
10
Differential sensing of protein influences by NO and CO vibrations in heme adducts.
J Am Chem Soc. 2006 Dec 27;128(51):16834-45. doi: 10.1021/ja064859d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验