Suppr超能文献

大脑脑干和脊髓中控制运动行为的模块。

Modules in the brain stem and spinal cord underlying motor behaviors.

机构信息

McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

J Neurophysiol. 2011 Sep;106(3):1363-78. doi: 10.1152/jn.00842.2010. Epub 2011 Jun 8.

Abstract

Previous studies using intact and spinalized animals have suggested that coordinated movements can be generated by appropriate combinations of muscle synergies controlled by the central nervous system (CNS). However, which CNS regions are responsible for expressing muscle synergies remains an open question. We address whether the brain stem and spinal cord are involved in expressing muscle synergies used for executing a range of natural movements. We analyzed the electromyographic (EMG) data recorded from frog leg muscles before and after transection at different levels of the neuraxis-rostral midbrain (brain stem preparations), rostral medulla (medullary preparations), and the spinal-medullary junction (spinal preparations). Brain stem frogs could jump, swim, kick, and step, while medullary frogs could perform only a partial repertoire of movements. In spinal frogs, cutaneous reflexes could be elicited. Systematic EMG analysis found two different synergy types: 1) synergies shared between pre- and posttransection states and 2) synergies specific to individual states. Almost all synergies found in natural movements persisted after transection at rostral midbrain or medulla but not at the spinal-medullary junction for swim and step. Some pretransection- and posttransection-specific synergies for a certain behavior appeared as shared synergies for other motor behaviors of the same animal. These results suggest that the medulla and spinal cord are sufficient for the expression of most muscle synergies in frog behaviors. Overall, this study provides further evidence supporting the idea that motor behaviors may be constructed by muscle synergies organized within the brain stem and spinal cord and activated by descending commands from supraspinal areas.

摘要

先前的研究使用完整和脊髓动物表明,协调运动可以通过适当的肌肉协同作用的组合来产生,这些协同作用由中枢神经系统(CNS)控制。然而,哪些 CNS 区域负责表达肌肉协同作用仍然是一个悬而未决的问题。我们研究了脑干和脊髓是否参与表达用于执行一系列自然运动的肌肉协同作用。我们分析了在中枢神经系统不同水平(中脑颅侧(脑干准备)、延髓颅侧(延髓准备)和脊髓-延髓交界处(脊髓准备))横切前后从青蛙腿部肌肉记录的肌电图(EMG)数据。脑干青蛙可以跳跃、游泳、踢腿和跨步,而延髓青蛙只能进行部分运动。在脊髓青蛙中,可以引发皮肤反射。系统的 EMG 分析发现了两种不同的协同作用类型:1)在术前和术后状态之间共享的协同作用;2)特定于单个状态的协同作用。在横切颅侧中脑或延髓后,几乎所有在自然运动中发现的协同作用都持续存在,但在游泳和跨步的脊髓-延髓交界处则不存在。对于某种行为的某些术前和术后特异性协同作用表现为同一动物其他运动行为的共享协同作用。这些结果表明,延髓和脊髓足以表达青蛙行为中大多数肌肉协同作用。总的来说,这项研究提供了进一步的证据,支持这样的观点,即运动行为可能是由脑干和脊髓内组织的肌肉协同作用构建的,并由来自皮质下区域的下行命令激活。

相似文献

1
Modules in the brain stem and spinal cord underlying motor behaviors.
J Neurophysiol. 2011 Sep;106(3):1363-78. doi: 10.1152/jn.00842.2010. Epub 2011 Jun 8.
4
Modular premotor drives and unit bursts as primitives for frog motor behaviors.
J Neurosci. 2004 Jun 2;24(22):5269-82. doi: 10.1523/JNEUROSCI.5626-03.2004.
5
Spinal control of muscle synergies for adult mammalian locomotion.
J Physiol. 2019 Jan;597(1):333-350. doi: 10.1113/JP277018. Epub 2018 Nov 10.
7
Motor primitives are determined in early development and are then robustly conserved into adulthood.
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):12025-12034. doi: 10.1073/pnas.1821455116. Epub 2019 May 28.
8
Adjustments of motor pattern for load compensation via modulated activations of muscle synergies during natural behaviors.
J Neurophysiol. 2009 Mar;101(3):1235-57. doi: 10.1152/jn.01387.2007. Epub 2008 Dec 17.
10
Absence of postural muscle synergies for balance after spinal cord transection.
J Neurophysiol. 2013 Sep;110(6):1301-10. doi: 10.1152/jn.00038.2013. Epub 2013 Jun 26.

引用本文的文献

2
CaNetiCs - An Open-Source Toolbox for Standardized Dimensionality Reduction of Neuronal Calcium Activity.
bioRxiv. 2025 Aug 1:2025.08.01.668030. doi: 10.1101/2025.08.01.668030.
3
Muscle synergies and metabolic adaptations during perturbed walking in older adults.
Sci Rep. 2025 Jul 2;15(1):23597. doi: 10.1038/s41598-025-07835-4.
5
Muscle-to-action mapping for intuitive training of muscle synergies in post-stroke upper-limb rehabilitation.
J Neuroeng Rehabil. 2025 Apr 28;22(1):99. doi: 10.1186/s12984-025-01630-y.
9
Synergy quality assessment of muscle modules for determining learning performance using a realistic musculoskeletal model.
Front Comput Neurosci. 2024 May 30;18:1355855. doi: 10.3389/fncom.2024.1355855. eCollection 2024.

本文引用的文献

2
Age-related modifications of muscle synergies and spinal cord activity during locomotion.
J Neurophysiol. 2010 Oct;104(4):2092-102. doi: 10.1152/jn.00525.2009. Epub 2010 Aug 4.
3
Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts.
J Neurophysiol. 2010 Jun;103(6):3084-98. doi: 10.1152/jn.00960.2009. Epub 2010 Apr 14.
4
A neural basis for motor primitives in the spinal cord.
J Neurosci. 2010 Jan 27;30(4):1322-36. doi: 10.1523/JNEUROSCI.5894-08.2010.
6
Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke.
J Neurophysiol. 2010 Feb;103(2):844-57. doi: 10.1152/jn.00825.2009. Epub 2009 Dec 9.
7
Stability of muscle synergies for voluntary actions after cortical stroke in humans.
Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8. doi: 10.1073/pnas.0910114106. Epub 2009 Oct 30.
8
The case for and against muscle synergies.
Curr Opin Neurobiol. 2009 Dec;19(6):601-7. doi: 10.1016/j.conb.2009.09.002. Epub 2009 Oct 12.
9
Electromyographic responses from the hindlimb muscles of the decerebrate cat to horizontal support surface perturbations.
J Neurophysiol. 2009 Jun;101(6):2751-61. doi: 10.1152/jn.91040.2008. Epub 2009 Mar 25.
10
Subdivisions of primary motor cortex based on cortico-motoneuronal cells.
Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):918-23. doi: 10.1073/pnas.0808362106. Epub 2009 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验