Department of Anatomy and Neurobiology, Morris K. Udall Parkinson's Disease Research Center of Excellence, Center for Microelectrode Technology, University of Kentucky, Lexington, KY, USA.
Brain Res. 2011 Jul 15;1401:1-9. doi: 10.1016/j.brainres.2011.05.025. Epub 2011 May 18.
Excessive excitability or hyperexcitability of glutamate-containing neurons in the brain has been proposed as a possible explanation for anxiety, stress-induced disorders, epilepsy, and some neurodegenerative diseases. However, direct measurement of glutamate on a rapid time scale has proven to be difficult. Here we adapted enzyme-based microelectrode arrays (MEA) capable of detecting glutamate in vivo, to assess the effectiveness of hyperexcitability modulators on glutamate release in brain slices of the rat neocortex. Using glutamate oxidase coated ceramic MEAs coupled with constant voltage amperometry, we measured resting glutamate levels and synaptic overflow of glutamate after K(+) stimulation in brain slices. MEAs reproducibly detected glutamate on a second-by-second time scale in the brain slice preparation after depolarization with high K(+) to evoke glutamate release. This stimulus-evoked glutamate release was robust, reproducible, and calcium dependent. The K(+)-evoked glutamate release was modulated by ligands to the α(2)δ subunit of voltage sensitive calcium channels (PD-0332334 and PD-0200390). Meanwhile, agonists to Group II metabotropic glutamate (mGlu) receptors (LY379268 and LY354740), which are known to alter hyperexcitability of glutamate neurons, attenuated K(+)-evoked glutamate release but did not alter resting glutamate levels. This new MEA technology provides a means of directly measuring the chemical messengers involved in glutamate neurotransmission and thereby helping to reveal the role multiple glutamatergic system components have on glutamate signaling.
大脑中谷氨酸能神经元的过度兴奋或超兴奋已被提出作为焦虑、应激相关障碍、癫痫和一些神经退行性疾病的可能解释。然而,快速时间尺度上谷氨酸的直接测量已被证明是困难的。在这里,我们采用了基于酶的微电极阵列(MEA),能够在体内检测谷氨酸,以评估超兴奋性调节剂对大鼠新皮层脑片谷氨酸释放的有效性。使用涂有谷氨酸氧化酶的陶瓷 MEA 与恒压安培法相结合,我们测量了脑片中 K+刺激后谷氨酸的静息水平和突触溢出。MEA 在高 K+去极化后以每秒一次的时间尺度在脑片制备物中重现地检测到谷氨酸,以引发谷氨酸释放。这种刺激诱发的谷氨酸释放是强大的、可重复的且依赖于钙。K+诱发的谷氨酸释放被电压敏感钙通道的 α2δ亚基配体(PD-0332334 和 PD-0200390)调制。同时,已知改变谷氨酸能神经元超兴奋性的 II 组代谢型谷氨酸(mGlu)受体激动剂(LY379268 和 LY354740)减弱了 K+诱发的谷氨酸释放,但不改变静息谷氨酸水平。这种新的 MEA 技术提供了一种直接测量参与谷氨酸神经传递的化学信使的方法,从而有助于揭示多种谷氨酸能系统成分在谷氨酸信号中的作用。