Protein Interactions Group, Center for Cancer Research Nanobiology Program, Center for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA.
J Biol Chem. 2011 Aug 5;286(31):27288-93. doi: 10.1074/jbc.M111.254219. Epub 2011 Jun 13.
The immunoglobulin (Ig) constant CH2 domain is critical for antibody effector functions. Isolated CH2 domains are promising scaffolds for construction of libraries containing diverse binders that could also confer some effector functions. We have shown previously that an isolated human CH2 domain is relatively unstable to thermally induced unfolding, but its stability can be improved by engineering an additional disulfide bond (Gong, R., Vu, B. K., Feng, Y., Prieto, D. A., Dyba, M. A., Walsh, J. D., Prabakaran, P., Veenstra, T. D., Tarasov, S. G., Ishima, R., and Dimitrov, D. S. (2009) J. Biol. Chem. 284, 14203-14210). We have hypothesized that the stability of this engineered antibody domain could be further increased by removing unstructured residues. To test our hypothesis, we removed the seven N-terminal residues that are in a random coil as suggested by our analysis of the isolated CH2 crystal structure and NMR data. The resulting shortened engineered CH2 (m01s) was highly soluble, monomeric, and remarkably stable, with a melting temperature (T(m)) of 82.6 °C, which is about 10 and 30 °C higher than those of the original stabilized CH2 (m01) and CH2, respectively. m01s and m01 were more resistant to protease digestion than CH2. A newly identified anti-CH2 antibody that recognizes a conformational epitope bound to m01s significantly better (>10-fold higher affinity) than to CH2 and slightly better than to m01. m01s bound to a recombinant soluble human neonatal Fc receptor at pH 6.0 more strongly than CH2. These data suggest that shortening the m01 N terminus significantly increases stability without disrupting its conformation and that our approach for increasing stability and decreasing size by removing unstructured regions may also apply to other proteins.
免疫球蛋白 (Ig) 恒定 CH2 结构域对于抗体效应功能至关重要。分离的 CH2 结构域是构建包含各种结合物的文库的有前途的支架,这些结合物也可以赋予一些效应功能。我们之前已经表明,分离的人 CH2 结构域对热诱导的展开相对不稳定,但是通过工程设计额外的二硫键可以提高其稳定性(Gong,R.,Vu,B. K.,Feng,Y.,Prieto,D. A.,Dyba,M. A.,Walsh,J. D.,Prabakaran,P.,Veenstra,T. D.,Tarasov,S. G.,Ishima,R.,和 Dimitrov,D. S.(2009)J. Biol. Chem. 284,14203-14210)。我们假设通过去除无规卷曲的残基可以进一步提高这种工程化抗体结构域的稳定性。为了验证我们的假设,我们去除了七个在无规卷曲中的 N 端残基,这是根据我们对分离的 CH2 晶体结构和 NMR 数据的分析得出的。所得缩短的工程化 CH2(m01s)高度可溶、单体且非常稳定,其熔点(T(m))为 82.6°C,比原始稳定的 CH2(m01)和 CH2 分别高约 10°C 和 30°C。m01s 和 m01 比 CH2 更能抵抗蛋白酶消化。一种新鉴定的抗-CH2 抗体识别与 m01s 结合的构象表位,与 CH2 结合的亲和力高出> 10 倍,与 m01 结合的亲和力略高。m01s 在 pH 6.0 时与重组可溶性人新生 Fc 受体的结合比 CH2 更强。这些数据表明,缩短 m01 的 N 端可显著提高稳定性而不破坏其构象,并且我们通过去除无规卷曲区域来提高稳定性和减小尺寸的方法也可能适用于其他蛋白质。