School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK.
J Magn Reson. 2011 Aug;211(2):178-85. doi: 10.1016/j.jmr.2011.05.014. Epub 2011 May 31.
The analysis of diffusion NMR data in terms of distributions of diffusion coefficients is hampered by the ill-posed nature of the required inverse Laplace transformation. Naïve approaches such as multiexponential fitting or standard least-squares algorithms are numerically unstable and often fail. This paper updates the CONTIN approach of the application of Tikhonov regularization to stabilise this numerical inversion problem and demonstrates two methods for automatically choosing the optimal value of the regularization parameter. These approaches are computationally efficient and easy to implement using standard matrix algebra techniques. Example analyses are presenting using both synthetic data and experimental results of diffusion NMR studies on the azo-dye sunset yellow and some polymer molecular weight reference standards.
用扩散系数分布来分析扩散 NMR 数据会受到所需的拉普拉斯逆变换不适定性的阻碍。像多指数拟合或标准最小二乘法这样的简单方法在数值上是不稳定的,而且经常会失败。本文更新了 CONTIN 方法,即应用 Tikhonov 正则化来稳定这个数值反演问题,并展示了两种自动选择正则化参数最优值的方法。这些方法在计算上是高效的,并且可以使用标准的矩阵代数技术轻松实现。本文通过对偶氮染料日落黄和一些聚合物分子量标准品的扩散 NMR 研究的实验结果和合成数据进行了示例分析。