Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.
Bioinformatics. 2011 Jul 1;27(13):i85-93. doi: 10.1093/bioinformatics/btr215.
Pseudoknots found in secondary structures of a number of functional RNAs play various roles in biological processes. Recent methods for predicting RNA secondary structures cover certain classes of pseudoknotted structures, but only a few of them achieve satisfying predictions in terms of both speed and accuracy.
We propose IPknot, a novel computational method for predicting RNA secondary structures with pseudoknots based on maximizing expected accuracy of a predicted structure. IPknot decomposes a pseudoknotted structure into a set of pseudoknot-free substructures and approximates a base-pairing probability distribution that considers pseudoknots, leading to the capability of modeling a wide class of pseudoknots and running quite fast. In addition, we propose a heuristic algorithm for refining base-paring probabilities to improve the prediction accuracy of IPknot. The problem of maximizing expected accuracy is solved by using integer programming with threshold cut. We also extend IPknot so that it can predict the consensus secondary structure with pseudoknots when a multiple sequence alignment is given. IPknot is validated through extensive experiments on various datasets, showing that IPknot achieves better prediction accuracy and faster running time as compared with several competitive prediction methods.
The program of IPknot is available at http://www.ncrna.org/software/ipknot/. IPknot is also available as a web server at http://rna.naist.jp/ipknot/.
satoken@k.u-tokyo.ac.jp; ykato@is.naist.jp
Supplementary data are available at Bioinformatics online.
在许多功能 RNA 的二级结构中发现的假结在生物过程中发挥着各种作用。最近用于预测 RNA 二级结构的方法涵盖了某些类别的假结结构,但其中只有少数几个在速度和准确性方面都能达到令人满意的预测效果。
我们提出了 IPknot,这是一种基于最大化预测结构准确性的新型计算方法,用于预测具有假结的 RNA 二级结构。IPknot 将假结结构分解为一组无假结的子结构,并近似考虑假结的碱基配对概率分布,从而能够对广泛类别的假结进行建模并快速运行。此外,我们提出了一种启发式算法来优化碱基配对概率,以提高 IPknot 的预测准确性。通过使用带阈值切割的整数规划来解决最大化预期准确性的问题。我们还扩展了 IPknot,以便在给定多序列比对时可以预测具有假结的共识二级结构。通过在各种数据集上进行广泛的实验验证,IPknot 表明与几个竞争预测方法相比,它可以实现更好的预测准确性和更快的运行时间。
IPknot 程序可在 http://www.ncrna.org/software/ipknot/ 获得。IPknot 还可以在 http://rna.naist.jp/ipknot/ 作为网络服务器获得。
satoken@k.u-tokyo.ac.jp;ykato@is.naist.jp
补充数据可在“Bioinformatics”在线获得。