Los Alamos National Laboratory, Bioscience Division, Mail Stop 888, Los Alamos, NM 87544, USA.
J Microbiol Methods. 2011 Sep;86(3):344-50. doi: 10.1016/j.mimet.2011.06.011. Epub 2011 Jun 17.
The importance of soil fungi in complex carbon degradation and the recent identification of genes involved in this process have sparked considerable interest in examining fungal gene expression in situ. Expression of target eukaryotic genes is commonly examined using reverse transcription (RT)-PCR, during which single-stranded (ss) complementary DNA (cDNA) is synthesized from an oligo (dT) primer and the gene of interest is subsequently amplified by PCR using gene specific primers. Another method that is being increasingly employed in environmental gene expression studies is SMART PCR, which generates and amplifies double-stranded (ds) complementary DNA (cDNA) from sscDNA using PCR, prior to gene-specific PCR. We performed a replicated comparison of these two methods using RNA extracted from forest soil and litter to determine if the two approaches yielded comparable results. Richness, composition and reproducibility of gene expression profiles of the fungal glycosyl hydrolase family 7 (GH7) cellobiohydrolase I gene (cbhI) were examined when amplified from sscDNA or dscDNA synthesized using SMART PCR. In the dscDNA libraries from soil or litter samples, richness was significantly reduced and the composition was altered relative to sscDNA libraries. Library composition was significantly more reproducible among replicate sscDNA libraries than among parallel dscDNA libraries from litter. In sum, the reduced richness and altered composition produced in the dscDNA libraries could substantially influence ecological interpretations of the data. Defining the factors underpinning the methodological biases will potentially aid in optimizing the design of gene expression studies in soils and other complex environmental samples.
土壤真菌在复杂碳降解中的重要性,以及最近鉴定出参与这一过程的基因,这激发了人们极大的兴趣,希望能在原位检测真菌的基因表达。通常使用逆转录(RT)-PCR 来检测靶真核基因的表达,在此过程中,寡聚(dT)引物合成单链(ss)互补 DNA(cDNA),然后使用基因特异性引物通过 PCR 扩增感兴趣的基因。另一种在环境基因表达研究中越来越多地采用的方法是 SMART-PCR,它使用 PCR 从 sscDNA 生成和扩增双链(ds)互补 DNA(cDNA),然后进行基因特异性 PCR。我们使用从森林土壤和凋落物中提取的 RNA 进行了这两种方法的重复比较,以确定这两种方法是否产生了可比的结果。当从 SMART-PCR 合成的 sscDNA 或 dscDNA 扩增时,我们研究了真菌糖苷水解酶家族 7(GH7)纤维二糖水解酶 I 基因(cbhI)的基因表达谱的丰富度、组成和重现性。与 sscDNA 文库相比,土壤或凋落物样本中的 dscDNA 文库的丰富度显著降低,组成也发生了改变。与来自凋落物的平行 dscDNA 文库相比,sscDNA 文库的组成在重复文库之间更具重现性。总的来说,dscDNA 文库中产生的丰富度降低和组成改变可能会极大地影响对数据的生态解释。确定方法学偏差的基础因素将有助于优化土壤和其他复杂环境样本中基因表达研究的设计。