Suppr超能文献

Src 激酶磷酸化对 N-甲基-D-天冬氨酸(NMDA)受体亚基 GluN2B 蛋白无规则 C 端结构域的影响。

Effect of Src kinase phosphorylation on disordered C-terminal domain of N-methyl-D-aspartic acid (NMDA) receptor subunit GluN2B protein.

机构信息

Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794-8661, USA.

出版信息

J Biol Chem. 2011 Aug 26;286(34):29904-12. doi: 10.1074/jbc.M111.258897. Epub 2011 Jun 28.

Abstract

NMDA receptors are ligand-gated ion channels with a regulatory intracellular C-terminal domain (CTD). In GluN2B, the CTD is the largest domain in the protein but is intrinsically disordered. The GluN2B subunit is the major tyrosine-phosphorylated protein in synapses. Src kinase phosphorylates the GluN2B CTD, but it is unknown how this affects channel activity. In disordered proteins, phosphorylation can tip the balance between order and disorder. Transitions can occur in both directions, so it is not currently possible to predict the effects of phosphorylation. We used single molecule fluorescence to characterize the effects of Src phosphorylation on GluN2B. Scanning fluorescent labeling sites throughout the domain showed no positional dependence of the energy transfer. Instead, efficiency only scaled with the separation between labeling sites suggestive of a relatively featureless conformational energy landscape. Src phosphorylation led to a general expansion of the polypeptide, which would result in greater exposure of known protein-binding sites and increase the physical separation between contiguous sites. Phosphorylation makes the CTD more like a random coil leaving open the question of how Src exerts its effects on the NMDA receptor.

摘要

NMDA 受体是配体门控离子通道,具有调节细胞内 C 端结构域(CTD)。在 GluN2B 中,CTD 是蛋白质中最大的结构域,但本质上是无规卷曲的。GluN2B 亚基是突触中主要的酪氨酸磷酸化蛋白。Src 激酶使 GluN2B CTD 磷酸化,但尚不清楚这如何影响通道活性。在无序蛋白中,磷酸化可以改变有序和无序之间的平衡。这种转变可以向两个方向发生,因此目前无法预测磷酸化的影响。我们使用单分子荧光技术来表征 Src 磷酸化对 GluN2B 的影响。在整个结构域中扫描荧光标记的位点,没有发现能量转移的位置依赖性。相反,效率仅与标记位点之间的分离相关,这表明存在相对无特征的构象能量景观。Src 磷酸化导致多肽的普遍扩展,这将导致已知的蛋白质结合位点更大程度的暴露,并增加连续位点之间的物理分离。磷酸化使 CTD 更像一个无规卷曲,这使得 Src 如何对 NMDA 受体发挥作用的问题悬而未决。

相似文献

1
4
NMDA channel regulation by channel-associated protein tyrosine kinase Src.
Science. 1997 Jan 31;275(5300):674-8. doi: 10.1126/science.275.5300.674.
7
Leptin modulates pancreatic β-cell membrane potential through Src kinase-mediated phosphorylation of NMDA receptors.
J Biol Chem. 2020 Dec 11;295(50):17281-17297. doi: 10.1074/jbc.RA120.015489. Epub 2020 Oct 9.
9
Arcuate Src activation-induced phosphorylation of NR2B NMDA subunit contributes to inflammatory pain in rats.
J Neurophysiol. 2012 Dec;108(11):3024-33. doi: 10.1152/jn.01047.2011. Epub 2012 Sep 19.

引用本文的文献

1
Structural insights into NMDA receptor pharmacology.
Biochem Soc Trans. 2023 Aug 31;51(4):1713-1731. doi: 10.1042/BST20230122.
2
Illuminating Intrinsically Disordered Proteins with Integrative Structural Biology.
Biomolecules. 2023 Jan 7;13(1):124. doi: 10.3390/biom13010124.
4
Topography and motion of acid-sensing ion channel intracellular domains.
Elife. 2021 Jul 22;10:e68955. doi: 10.7554/eLife.68955.
5
Regulation of the NMDA receptor by its cytoplasmic domains: (How) is the tail wagging the dog?
Neuropharmacology. 2021 Sep 1;195:108634. doi: 10.1016/j.neuropharm.2021.108634. Epub 2021 Jun 20.
7
Structural Dynamics of Glutamate Signaling Systems by smFRET.
Biophys J. 2020 Nov 17;119(10):1929-1936. doi: 10.1016/j.bpj.2020.10.009. Epub 2020 Oct 20.
8
Specific Conformational Dynamics and Expansion Underpin a Multi-Step Mechanism for Specific Binding of p27 with Cdk2/Cyclin A.
J Mol Biol. 2020 Apr 17;432(9):2998-3017. doi: 10.1016/j.jmb.2020.02.010. Epub 2020 Feb 20.
9
NMDA receptor C-terminal signaling in development, plasticity, and disease.
F1000Res. 2019 Aug 30;8. doi: 10.12688/f1000research.19925.1. eCollection 2019.
10
Single-molecule fluorescence studies of intrinsically disordered proteins and liquid phase separation.
Biochim Biophys Acta Proteins Proteom. 2019 Oct;1867(10):980-987. doi: 10.1016/j.bbapap.2019.04.007. Epub 2019 May 2.

本文引用的文献

1
2
Beyond the random coil: stochastic conformational switching in intrinsically disordered proteins.
Structure. 2011 Apr 13;19(4):566-76. doi: 10.1016/j.str.2011.01.011.
3
Glutamate receptor ion channels: structure, regulation, and function.
Pharmacol Rev. 2010 Sep;62(3):405-96. doi: 10.1124/pr.109.002451.
4
Optimizing methods to recover absolute FRET efficiency from immobilized single molecules.
Biophys J. 2010 Aug 4;99(3):961-70. doi: 10.1016/j.bpj.2010.04.063.
5
From the Cover: Charge interactions can dominate the dimensions of intrinsically disordered proteins.
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14609-14. doi: 10.1073/pnas.1001743107. Epub 2010 Jul 16.
6
Sequence determinants of compaction in intrinsically disordered proteins.
Biophys J. 2010 May 19;98(10):2383-90. doi: 10.1016/j.bpj.2010.02.006.
7
Net charge per residue modulates conformational ensembles of intrinsically disordered proteins.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8183-8. doi: 10.1073/pnas.0911107107. Epub 2010 Apr 19.
10
Single-molecule FRET TACKLE reveals highly dynamic mismatched DNA-MutS complexes.
Biochemistry. 2010 Apr 13;49(14):3174-90. doi: 10.1021/bi901871u.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验