Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
Epidemiology. 2011 Sep;22(5):680-5. doi: 10.1097/EDE.0b013e3182254cc6.
A unique challenge in air pollution cohort studies and similar applications in environmental epidemiology is that exposure is not measured directly at subjects' locations. Instead, pollution data from monitoring stations at some distance from the study subjects are used to predict exposures, and these predicted exposures are used to estimate the health effect parameter of interest. It is usually assumed that minimizing the error in predicting the true exposure will improve health effect estimation. We show in a simulation study that this is not always the case. We interpret our results in light of recently developed statistical theory for measurement error, and we discuss implications for the design and analysis of epidemiologic research.
在空气污染队列研究和环境流行病学中的类似应用中,一个独特的挑战是暴露情况不能直接在研究对象的位置进行测量。相反,使用距离研究对象一定距离的监测站的污染数据来预测暴露情况,然后使用这些预测的暴露情况来估计感兴趣的健康效应参数。通常假定,最小化预测真实暴露情况的误差将改善健康效应的估计。我们在一项模拟研究中表明,情况并不总是如此。我们根据最近为测量误差开发的统计理论来解释我们的结果,并讨论了这些结果对流行病学研究的设计和分析的影响。