Suppr超能文献

与动物相关的真菌中独立的亚基酶扩张。

Independent subtilases expansions in fungi associated with animals.

机构信息

Institute of Biochemistry and Biophysics, Warsaw, Poland.

出版信息

Mol Biol Evol. 2011 Dec;28(12):3395-404. doi: 10.1093/molbev/msr176. Epub 2011 Jul 4.

Abstract

Many socially important fungi encode an elevated number of subtilisin-like serine proteases, which have been shown to be involved in fungal mutualisms with grasses and in parasitism of insects, nematodes, plants, other fungi, and mammalian skin. These proteins have endopeptidase activities and constitute a significant part of fungal secretomes. Here, we use comparative genomics to investigate the relationship between the quality and quantity of serine proteases and the ability of fungi to cause disease in invertebrate and vertebrate animals. Our screen of previously unexamined fungi allowed us to annotate and identify nearly 1000 subtilisin-containing proteins and to describe six new categories of serine proteases. Architectures of predicted proteases reveal novel combinations of subtilisin domains with other, co-occurring domains. Phylogenetic analysis of the most common clade of fungal proteases, proteinase K, showed that gene family size changed independently in fungi, pathogenic to invertebrates (Hypocreales) and vertebrates (Onygenales). Interestingly, simultaneous expansions in the S8 and S53 families of subtilases in a single fungal species are rare. Our analysis finds that closely related systemic human pathogens may not show the same gene family expansions, and that related pathogens and nonpathogens may show the same type of gene family expansion. Therefore, the number of proteases does not appear to relate to pathogenicity. Instead, we hypothesize that the number of fungal serine proteases in a species is related to the use of the animal as a food source, whether it is dead or alive.

摘要

许多具有社会重要性的真菌编码了大量的枯草杆菌蛋白酶样丝氨酸蛋白酶,这些蛋白酶已被证明参与了真菌与禾本科植物的共生关系,以及对昆虫、线虫、植物、其他真菌和哺乳动物皮肤的寄生关系。这些蛋白质具有内肽酶活性,构成了真菌分泌组的重要组成部分。在这里,我们使用比较基因组学来研究丝氨酸蛋白酶的质量和数量与真菌在无脊椎动物和脊椎动物中致病能力之间的关系。我们对以前未被研究的真菌进行了筛选,从而能够注释和鉴定近 1000 种含有枯草杆菌蛋白酶的蛋白质,并描述了六种新的丝氨酸蛋白酶类别。预测蛋白酶的结构揭示了枯草杆菌蛋白酶与其他共同存在的结构域的新颖组合。最常见的真菌蛋白酶类群——蛋白酶 K 的系统发育分析表明,基因家族的大小在真菌中独立发生变化,这些真菌对无脊椎动物(Hypocreales)和脊椎动物(Onygenales)具有致病性。有趣的是,单一真菌物种中 S8 和 S53 家族的枯草杆菌蛋白酶同时扩张的情况很少见。我们的分析发现,密切相关的系统性人类病原体可能不会表现出相同的基因家族扩张,而相关的病原体和非病原体可能表现出相同类型的基因家族扩张。因此,蛋白酶的数量似乎与致病性无关。相反,我们假设一个物种中真菌丝氨酸蛋白酶的数量与将动物作为食物来源有关,无论是死的还是活的。

相似文献

1
Independent subtilases expansions in fungi associated with animals.
Mol Biol Evol. 2011 Dec;28(12):3395-404. doi: 10.1093/molbev/msr176. Epub 2011 Jul 4.
3
New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina.
BMC Evol Biol. 2010 Mar 9;10:68. doi: 10.1186/1471-2148-10-68.
4
Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi.
Sci Rep. 2017 Mar 30;7:45456. doi: 10.1038/srep45456.
6
A phylogenomic approach to reconstructing the diversification of serine proteases in fungi.
J Evol Biol. 2004 Nov;17(6):1204-14. doi: 10.1111/j.1420-9101.2004.00786.x.
8
Regulation of subtilisin-like protease prC expression by nematode cuticle in the nematophagous fungus Clonostachys rosea.
Environ Microbiol. 2010 Dec;12(12):3243-52. doi: 10.1111/j.1462-2920.2010.02296.x.
10
Subtilisin-like proteases in plant defence: the past, the present and beyond.
Mol Plant Pathol. 2018 Apr;19(4):1017-1028. doi: 10.1111/mpp.12567. Epub 2017 Jul 26.

引用本文的文献

1
Dermatophytes adaptation to the human host exemplified by .
Mycology. 2025 Feb 16;16(3):1357-1372. doi: 10.1080/21501203.2025.2461720. eCollection 2025.
4
Biochemical and molecular characterization of novel keratinolytic protease from (KRLr1).
Front Microbiol. 2023 May 10;14:1132760. doi: 10.3389/fmicb.2023.1132760. eCollection 2023.
6
Phylogenetic survey of the subtilase family and a data-mining-based search for new subtilisins from .
Front Microbiol. 2022 Sep 26;13:1017978. doi: 10.3389/fmicb.2022.1017978. eCollection 2022.
7
Comparative Genomics and Molecular Analysis of Epidermophyton floccosum.
Mycopathologia. 2021 Aug;186(4):487-497. doi: 10.1007/s11046-021-00567-9. Epub 2021 Jun 23.
8
Pathogenicity-associated protein domains: The fiercely-conserved evolutionary signatures.
Gene Rep. 2017 Jun;7:127-141. doi: 10.1016/j.genrep.2017.04.004. Epub 2017 Apr 8.
10
Leveraging single-cell genomics to expand the fungal tree of life.
Nat Microbiol. 2018 Dec;3(12):1417-1428. doi: 10.1038/s41564-018-0261-0. Epub 2018 Oct 8.

本文引用的文献

1
Cycling through metabolism.
EMBO Mol Med. 2010 Sep;2(9):338-48. doi: 10.1002/emmm.201000089.
2
Yeast evolutionary genomics.
Nat Rev Genet. 2010 Jul;11(7):512-24. doi: 10.1038/nrg2811.
3
Functional diversity of ankyrin repeats in microbial proteins.
Trends Microbiol. 2010 Mar;18(3):132-9. doi: 10.1016/j.tim.2009.11.004. Epub 2009 Dec 3.
4
The Pfam protein families database.
Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22. doi: 10.1093/nar/gkp985. Epub 2009 Nov 17.
5
Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives.
Genome Res. 2009 Oct;19(10):1722-31. doi: 10.1101/gr.087551.108. Epub 2009 Aug 28.
6
Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana.
J Invertebr Pathol. 2009 Oct;102(2):155-9. doi: 10.1016/j.jip.2009.07.013. Epub 2009 Aug 8.
8
trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses.
Bioinformatics. 2009 Aug 1;25(15):1972-3. doi: 10.1093/bioinformatics/btp348. Epub 2009 Jun 8.
9
Estimating maximum likelihood phylogenies with PhyML.
Methods Mol Biol. 2009;537:113-37. doi: 10.1007/978-1-59745-251-9_6.
10
Cloning and heterologous expression of SS10, a subtilisin-like protease displaying antifungal activity from Trichoderma harzianum.
FEMS Microbiol Lett. 2009 Jan;290(1):54-61. doi: 10.1111/j.1574-6968.2008.01403.x. Epub 2008 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验