Suppr超能文献

热力学卡西米尔力的纵横比依赖性。

Aspect-ratio dependence of thermodynamic Casimir forces.

作者信息

Hucht Alfred, Grüneberg Daniel, Schmidt Felix M

机构信息

Fakultät für Physik, Universität Duisburg-Essen, Duisburg, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051101. doi: 10.1103/PhysRevE.83.051101. Epub 2011 May 2.

Abstract

We consider the three-dimensional Ising model in a L(⊥)×L(∥)×L(∥) cuboid geometry with a finite aspect ratio ρ=L(⊥)/L(∥) and periodic boundary conditions along all directions. For this model the finite-size scaling functions of the excess free energy and thermodynamic Casimir force are evaluated numerically by means of Monte Carlo simulations. The Monte Carlo results compare well with recent field theoretical results for the Ising universality class at temperatures above and slightly below the bulk critical temperature T(c). Furthermore, the excess free energy and Casimir force scaling functions of the two-dimensional Ising model are calculated exactly for arbitrary ρ and compared to the three-dimensional case. We give a general argument that the Casimir force vanishes at the critical point for ρ=1 and becomes repulsive in periodic systems for ρ>1.

摘要

我们考虑在具有有限纵横比 ρ = L(⊥)/L(∥) 且沿所有方向具有周期性边界条件的 L(⊥)×L(∥)×L(∥) 长方体几何结构中的三维伊辛模型。对于该模型,通过蒙特卡罗模拟对过剩自由能和热力学卡西米尔力的有限尺寸标度函数进行了数值评估。蒙特卡罗结果与伊辛普适类在高于和略低于体临界温度 T(c) 的温度下的近期场论结果吻合良好。此外,针对任意 ρ 精确计算了二维伊辛模型的过剩自由能和卡西米尔力标度函数,并与三维情况进行了比较。我们给出一个一般性的论证,即卡西米尔力在 ρ = 1 时在临界点消失,而在 ρ > 1 的周期性系统中变为排斥力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验