Zarmi Yair
Jacob Blaustein Institutes for Desert Research Ben-Gurion, University of the Negev, Midreshet Ben-Gurion 84990, Israel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056606. doi: 10.1103/PhysRevE.83.056606. Epub 2011 May 13.
The Hirota algorithm for solving several integrable nonlinear evolution equations is suggestive of a simple construction of a quantized representation of these equations and their soliton solutions over a Fock space of bosons or of fermions. The classical nonlinear wave equation becomes a nonlinear equation for an operator. The solution of this equation is constructed through an operator analog of the Hirota transformation. The classical N-soliton solution is the expectation value of the solution operator in an N-particle state in the Fock space. The effect of perturbations that modify soliton identity is demonstrated.
用于求解多个可积非线性演化方程的广田算法暗示了一种在玻色子或费米子的福克空间上对这些方程及其孤子解进行量子化表示的简单构造。经典非线性波动方程变成了一个关于算符的非线性方程。该方程的解通过广田变换的算符类似物来构造。经典的 N 孤子解是解算符在福克空间中 N 粒子态的期望值。展示了修改孤子特性的微扰的影响。