Suppr超能文献

利用人体的导电特性进行植入式医疗设备的无线通信。

Wireless communication with implanted medical devices using the conductive properties of the body.

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Expert Rev Med Devices. 2011 Jul;8(4):427-33. doi: 10.1586/erd.11.16.

Abstract

Many medical devices that are implanted in the body use wires or wireless radiofrequency telemetry to communicate with circuitry outside the body. However, the wires are a common source of surgical complications, including breakage, infection and electrical noise. In addition, radiofrequency telemetry requires large amounts of power and results in low-efficiency transmission through biological tissue. As an alternative, the conductive properties of the body can be used to enable wireless communication with implanted devices. In this article, several methods of intrabody communication are described and compared. In addition to reducing the complications that occur with current implantable medical devices, intrabody communication can enable novel types of miniature devices for research and clinical applications.

摘要

许多植入人体的医疗器械利用电线或无线射频遥测技术与体外的电路进行通信。然而,这些电线是导致手术并发症的常见原因,包括断裂、感染和电噪声。此外,射频遥测需要大量的电力,并且通过生物组织的传输效率较低。作为替代方案,可以利用人体的导电特性来实现与植入设备的无线通信。本文描述并比较了几种体内通信方法。除了减少当前可植入医疗设备所产生的并发症外,体内通信还可以实现用于研究和临床应用的新型微型设备。

相似文献

1
Wireless communication with implanted medical devices using the conductive properties of the body.
Expert Rev Med Devices. 2011 Jul;8(4):427-33. doi: 10.1586/erd.11.16.
2
Optical power transfer and communication methods for wireless implantable sensing platforms.
J Biomed Opt. 2015 Sep;20(9):095012. doi: 10.1117/1.JBO.20.9.095012.
3
4
A power and data link for a wireless-implanted neural recording system.
IEEE Trans Biomed Eng. 2012 Nov;59(11):3255-62. doi: 10.1109/TBME.2012.2214385. Epub 2012 Aug 21.
6
SAW-LC coupled resonator wideband VCO for medical telemetry.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4824-4827. doi: 10.1109/EMBC.2016.7591807.
7
Enabling wireless powering and telemetry for peripheral nerve implants.
IEEE J Biomed Health Inform. 2015 May;19(3):958-70. doi: 10.1109/JBHI.2015.2424985. Epub 2015 Apr 21.
8
An Inductive Power and Data Telemetry Subsystem With Fast Transient Low Dropout Regulator for Biomedical Implants.
IEEE Trans Biomed Circuits Syst. 2016 Apr;10(2):435-44. doi: 10.1109/TBCAS.2015.2447526. Epub 2015 Aug 13.
9
A roundtable discussion: wireless ahead: integrating medical devices into IT networks.
Biomed Instrum Technol. 2011 Fall;Suppl:8-13. doi: 10.2345/0899-8205-45.s2.8.
10
Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.
Sensors (Basel). 2016 Mar 18;16(3):393. doi: 10.3390/s16030393.

引用本文的文献

1
Wireless power-up and readout from a label-free biosensor.
Biomed Microdevices. 2025 Jan 10;27(1):2. doi: 10.1007/s10544-024-00728-9.
2
Biocompatible Electrical and Optical Interfaces for Implantable Sensors and Devices.
Sensors (Basel). 2024 Jun 12;24(12):3799. doi: 10.3390/s24123799.
3
Comparative analysis of energy transfer mechanisms for neural implants.
Front Neurosci. 2024 Jan 16;17:1320441. doi: 10.3389/fnins.2023.1320441. eCollection 2023.
4
Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications.
Biosensors (Basel). 2023 Nov 7;13(11):976. doi: 10.3390/bios13110976.
5
Brave New Healthcare: A Narrative Review of Digital Healthcare in American Medicine.
Cureus. 2023 Oct 4;15(10):e46489. doi: 10.7759/cureus.46489. eCollection 2023 Oct.
7
Implantable biosensors for musculoskeletal health.
Connect Tissue Res. 2022 May;63(3):228-242. doi: 10.1080/03008207.2022.2041002. Epub 2022 Feb 17.
8
Enhancement of Bone Regeneration Through the Converse Piezoelectric Effect, A Novel Approach for Applying Mechanical Stimulation.
Bioelectricity. 2021 Dec 1;3(4):255-271. doi: 10.1089/bioe.2021.0019. Epub 2021 Dec 16.
9
Tele-Monitoring System for Chronic Diseases Management: Requirements and Architecture.
Int J Environ Res Public Health. 2021 Jul 13;18(14):7459. doi: 10.3390/ijerph18147459.
10
Wireless and battery-free technologies for neuroengineering.
Nat Biomed Eng. 2023 Apr;7(4):405-423. doi: 10.1038/s41551-021-00683-3. Epub 2021 Mar 8.

本文引用的文献

1
Multilayer limb quasi-static electromagnetic modeling with experiments for Galvanic coupling type IBC.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:378-81. doi: 10.1109/IEMBS.2010.5627992.
2
Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.
Nat Mater. 2010 Jun;9(6):511-7. doi: 10.1038/nmat2745. Epub 2010 Apr 18.
3
IBCOM (intra-brain communication) microsystem: wireless transmission of neural signals within the brain.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2054-7. doi: 10.1109/IEMBS.2009.5334432.
5
A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response.
J Diabetes Sci Technol. 2008 Nov;2(6):1003-15. doi: 10.1177/193229680800200610.
6
Remote surveillance of implantable cardiac devices.
Pacing Clin Electrophysiol. 2009 Jul;32(7):928-39. doi: 10.1111/j.1540-8159.2009.02412.x.
7
Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease.
Lancet Neurol. 2009 Jan;8(1):67-81. doi: 10.1016/S1474-4422(08)70291-6.
8
Direct control of paralysed muscles by cortical neurons.
Nature. 2008 Dec 4;456(7222):639-42. doi: 10.1038/nature07418. Epub 2008 Oct 15.
9
Cortical control of a prosthetic arm for self-feeding.
Nature. 2008 Jun 19;453(7198):1098-101. doi: 10.1038/nature06996. Epub 2008 May 28.
10
On the mechanisms of biocompatibility.
Biomaterials. 2008 Jul;29(20):2941-53. doi: 10.1016/j.biomaterials.2008.04.023. Epub 2008 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验