Suppr超能文献

关于对非连续字母组合进行编码。

On coding non-contiguous letter combinations.

作者信息

Dandurand Frédéric, Grainger Jonathan, Duñabeitia Jon Andoni, Granier Jean-Pierre

机构信息

Department of Psychology, Université de Montréal Montréal, QC, Canada.

出版信息

Front Psychol. 2011 Jun 21;2:136. doi: 10.3389/fpsyg.2011.00136. eCollection 2011.

Abstract

Starting from the hypothesis that printed word identification initially involves the parallel mapping of visual features onto location-specific letter identities, we analyze the type of information that would be involved in optimally mapping this location-specific orthographic code onto a location-invariant lexical code. We assume that some intermediate level of coding exists between individual letters and whole words, and that this involves the representation of letter combinations. We then investigate the nature of this intermediate level of coding given the constraints of optimality. This intermediate level of coding is expected to compress data while retaining as much information as possible about word identity. Information conveyed by letters is a function of how much they constrain word identity and how visible they are. Optimization of this coding is a combination of minimizing resources (using the most compact representations) and maximizing information. We show that in a large proportion of cases, non-contiguous letter sequences contain more information than contiguous sequences, while at the same time requiring less precise coding. Moreover, we found that the best predictor of human performance in orthographic priming experiments was within-word ranking of conditional probabilities, rather than average conditional probabilities. We conclude that from an optimality perspective, readers learn to select certain contiguous and non-contiguous letter combinations as information that provides the best cue to word identity.

摘要

从印刷文字识别最初涉及将视觉特征并行映射到特定位置的字母身份这一假设出发,我们分析了将这种特定位置的正字法代码最佳映射到位置不变的词汇代码所涉及的信息类型。我们假设在单个字母和整个单词之间存在某种中间编码水平,并且这涉及字母组合的表示。然后,我们在最优性约束条件下研究这种中间编码水平的性质。预计这种中间编码水平会压缩数据,同时保留尽可能多的关于单词身份的信息。字母传达的信息是它们对单词身份的约束程度以及它们的可见程度的函数。这种编码的优化是最小化资源(使用最紧凑的表示)和最大化信息的结合。我们表明,在很大一部分情况下,非连续字母序列比连续序列包含更多信息,同时所需的编码精度更低。此外,我们发现,在正字法启动实验中,人类表现的最佳预测指标是条件概率的词内排名,而不是平均条件概率。我们得出结论,从最优性角度来看,读者学会选择某些连续和非连续的字母组合作为提供单词身份最佳线索的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf1/3122073/6a84635d1dda/fpsyg-02-00136-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验