Suppr超能文献

一种基于图像的肿瘤生长建模的生成式方法。

A generative approach for image-based modeling of tumor growth.

作者信息

Menze Bjoern H, Van Leemput Koen, Honkela Antti, Konukoglu Ender, Weber Marc-André, Ayache Nicholas, Golland Polina

机构信息

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA.

出版信息

Inf Process Med Imaging. 2011;22:735-47. doi: 10.1007/978-3-642-22092-0_60.

Abstract

Extensive imaging is routinely used in brain tumor patients to monitor the state of the disease and to evaluate therapeutic options. A large number of multi-modal and multi-temporal image volumes is acquired in standard clinical cases, requiring new approaches for comprehensive integration of information from different image sources and different time points. In this work we propose a joint generative model of tumor growth and of image observation that naturally handles multimodal and longitudinal data. We use the model for analyzing imaging data in patients with glioma. The tumor growth model is based on a reaction-diffusion framework. Model personalization relies only on a forward model for the growth process and on image likelihood. We take advantage of an adaptive sparse grid approximation for efficient inference via Markov Chain Monte Carlo sampling. The approach can be used for integrating information from different multi-modal imaging protocols and can easily be adapted to other tumor growth models.

摘要

广泛的成像技术通常用于脑肿瘤患者,以监测疾病状态并评估治疗方案。在标准临床病例中会获取大量多模态和多时间点的图像数据,这就需要新的方法来全面整合来自不同图像源和不同时间点的信息。在这项工作中,我们提出了一种肿瘤生长和图像观察的联合生成模型,该模型能够自然地处理多模态和纵向数据。我们使用该模型分析胶质瘤患者的成像数据。肿瘤生长模型基于反应扩散框架。模型个性化仅依赖于生长过程的正向模型和图像似然性。我们利用自适应稀疏网格近似通过马尔可夫链蒙特卡罗采样进行高效推理。该方法可用于整合来自不同多模态成像协议的信息,并且可以轻松地适应其他肿瘤生长模型。

相似文献

3
Combining generative models for multifocal glioma segmentation and registration.用于多灶性胶质瘤分割与配准的生成模型融合
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):763-70. doi: 10.1007/978-3-319-10404-1_95.
4
Multiscale modeling for image analysis of brain tumor studies.脑肿瘤研究的图像分析的多尺度建模。
IEEE Trans Biomed Eng. 2012 Jan;59(1):25-9. doi: 10.1109/TBME.2011.2163406. Epub 2011 Aug 1.
5
A generative model for brain tumor segmentation in multi-modal images.一种用于多模态图像中脑肿瘤分割的生成模型。
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):151-9. doi: 10.1007/978-3-642-15745-5_19.

引用本文的文献

5
Analyzing magnetic resonance imaging data from glioma patients using deep learning.利用深度学习分析脑胶质瘤患者的磁共振成像数据。
Comput Med Imaging Graph. 2021 Mar;88:101828. doi: 10.1016/j.compmedimag.2020.101828. Epub 2020 Dec 2.
6
IMAGE-DRIVEN BIOPHYSICAL TUMOR GROWTH MODEL CALIBRATION.图像驱动的生物物理肿瘤生长模型校准
SIAM J Sci Comput. 2020;42(3):B549-B580. doi: 10.1137/19M1275280. Epub 2020 May 6.
9
Coupling brain-tumor biophysical models and diffeomorphic image registration.耦合脑肿瘤生物物理模型与微分同胚图像配准
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.

本文引用的文献

1
Cellular automata segmentation of brain tumors on post contrast MR images.基于增强后磁共振图像的脑肿瘤细胞自动机分割
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):137-46. doi: 10.1007/978-3-642-15711-0_18.
3
Tumor invasion margin on the Riemannian space of brain fibers.脑纤维黎曼空间上的肿瘤浸润边缘
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):531-9. doi: 10.1007/978-3-642-04271-3_65.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验