Menze Bjoern H, Van Leemput Koen, Honkela Antti, Konukoglu Ender, Weber Marc-André, Ayache Nicholas, Golland Polina
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA.
Inf Process Med Imaging. 2011;22:735-47. doi: 10.1007/978-3-642-22092-0_60.
Extensive imaging is routinely used in brain tumor patients to monitor the state of the disease and to evaluate therapeutic options. A large number of multi-modal and multi-temporal image volumes is acquired in standard clinical cases, requiring new approaches for comprehensive integration of information from different image sources and different time points. In this work we propose a joint generative model of tumor growth and of image observation that naturally handles multimodal and longitudinal data. We use the model for analyzing imaging data in patients with glioma. The tumor growth model is based on a reaction-diffusion framework. Model personalization relies only on a forward model for the growth process and on image likelihood. We take advantage of an adaptive sparse grid approximation for efficient inference via Markov Chain Monte Carlo sampling. The approach can be used for integrating information from different multi-modal imaging protocols and can easily be adapted to other tumor growth models.
广泛的成像技术通常用于脑肿瘤患者,以监测疾病状态并评估治疗方案。在标准临床病例中会获取大量多模态和多时间点的图像数据,这就需要新的方法来全面整合来自不同图像源和不同时间点的信息。在这项工作中,我们提出了一种肿瘤生长和图像观察的联合生成模型,该模型能够自然地处理多模态和纵向数据。我们使用该模型分析胶质瘤患者的成像数据。肿瘤生长模型基于反应扩散框架。模型个性化仅依赖于生长过程的正向模型和图像似然性。我们利用自适应稀疏网格近似通过马尔可夫链蒙特卡罗采样进行高效推理。该方法可用于整合来自不同多模态成像协议的信息,并且可以轻松地适应其他肿瘤生长模型。