Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9.
J Mol Biol. 2011 Sep 2;411(5):960-71. doi: 10.1016/j.jmb.2011.06.050. Epub 2011 Jul 6.
Apurinic/apyrimidinic endonuclease 1 (APE1) is the major mammalian enzyme in DNA base excision repair that cleaves the DNA phosphodiester backbone immediately 5' to abasic sites. Recently, we identified APE1 as an endoribonuclease that cleaves a specific coding region of c-myc mRNA in vitro, regulating c-myc mRNA level and half-life in cells. Here, we further characterized the endoribonuclease activity of APE1, focusing on the active-site center of the enzyme previously defined for DNA nuclease activities. We found that most site-directed APE1 mutant proteins (N68A, D70A, Y171F, D210N, F266A, D308A, and H309S), which target amino acid residues constituting the abasic DNA endonuclease active-site pocket, showed significant decreases in endoribonuclease activity. Intriguingly, the D283N APE1 mutant protein retained endoribonuclease and abasic single-stranded RNA cleavage activities, with concurrent loss of apurinic/apyrimidinic (AP) site cleavage activities on double-stranded DNA and single-stranded DNA (ssDNA). The mutant proteins bound c-myc RNA equally well as wild-type (WT) APE1, with the exception of H309N, suggesting that most of these residues contributed primarily to RNA catalysis and not to RNA binding. Interestingly, both the endoribonuclease and the ssRNA AP site cleavage activities of WT APE1 were present in the absence of Mg(2+), while ssDNA AP site cleavage required Mg(2+) (optimally at 0.5-2.0 mM). We also found that a 2'-OH on the sugar moiety was absolutely required for RNA cleavage by WT APE1, consistent with APE1 leaving a 3'-PO(4)(2-) group following cleavage of RNA. Altogether, our data support the notion that a common active site is shared for the endoribonuclease and other nuclease activities of APE1; however, we provide evidence that the mechanisms for cleaving RNA, abasic single-stranded RNA, and abasic DNA by APE1 are not identical, an observation that has implications for unraveling the endoribonuclease function of APE1 in vivo.
脱嘌呤/脱嘧啶核酸内切酶 1(APE1)是哺乳动物 DNA 碱基切除修复中的主要酶,可在碱基缺失位点的 5'端切割 DNA 磷酸二酯键。最近,我们发现 APE1 是一种内切核糖核酸酶,可在体外切割 c-myc mRNA 的特定编码区,调节细胞中 c-myc mRNA 的水平和半衰期。在这里,我们进一步研究了 APE1 的内切核糖核酸酶活性,重点是先前定义的 DNA 核酸酶活性的酶的活性中心。我们发现,针对构成碱基缺失 DNA 内切核酸酶活性位点口袋的氨基酸残基的大多数定点 APE1 突变蛋白(N68A、D70A、Y171F、D210N、F266A、D308A 和 H309S),其内切核糖核酸酶活性显著降低。有趣的是,D283N APE1 突变蛋白保留了内切核糖核酸酶和碱基缺失的单链 RNA 切割活性,同时丧失了双链 DNA 和单链 DNA(ssDNA)上的无嘌呤/无嘧啶(AP)位点切割活性。突变蛋白与野生型(WT)APE1 一样,除 H309N 外,同样能很好地结合 c-myc RNA,这表明大多数这些残基主要参与 RNA 催化,而不是 RNA 结合。有趣的是,WT APE1 的内切核糖核酸酶和 ssRNA AP 位点切割活性均存在于没有 Mg(2+)的情况下,而 ssDNA AP 位点切割需要 Mg(2+)(最佳浓度为 0.5-2.0 mM)。我们还发现,糖部分的 2'-OH 对 WT APE1 的 RNA 切割是绝对必需的,这与 APE1 在切割 RNA 后留下 3'-PO(4)(2-)基团一致。总的来说,我们的数据支持这样一种观点,即 APE1 的内切核糖核酸酶和其他核酸酶活性共享一个共同的活性位点;然而,我们提供的证据表明,APE1 切割 RNA、碱基缺失的单链 RNA 和碱基缺失的 DNA 的机制并不相同,这一观察结果对揭示 APE1 在内切核糖核酸酶功能体内具有重要意义。