Suppr超能文献

将电子健康记录中提取的心理社会数据实时链接到心力衰竭再入院的风险。

Linking electronic health record-extracted psychosocial data in real-time to risk of readmission for heart failure.

机构信息

Center for Connected Health, Partners Healthcare, Boston, MA, USA.

出版信息

Psychosomatics. 2011 Jul-Aug;52(4):319-27. doi: 10.1016/j.psym.2011.02.007.

Abstract

BACKGROUND

Knowledge of psychosocial characteristics that helps to identify patients at increased risk for readmission for heart failure (HF) may facilitate timely and targeted care.

OBJECTIVE

We hypothesized that certain psychosocial characteristics extracted from the electronic health record (EHR) would be associated with an increased risk for hospital readmission within the next 30 days.

METHODS

We identified 15 psychosocial predictors of readmission. Eleven of these were extracted from the EHR (six from structured data sources and five from unstructured clinical notes). We then analyzed their association with the likelihood of hospital readmission within the next 30 days among 729 patients admitted for HF. Finally, we developed a multivariable predictive model to recognize individuals at high risk for readmission.

RESULTS

We found five characteristics-dementia, depression, adherence, declining/refusal of services, and missed clinical appointments-that were associated with an increased risk for hospital readmission: the first four features were captured from unstructured clinical notes, while the last item was captured from a structured data source.

CONCLUSIONS

Unstructured clinical notes contain important knowledge on the relationship between psychosocial risk factors and an increased risk of readmission for HF that would otherwise have been missed if only structured data were considered. Gathering this EHR-based knowledge can be automated, thus enabling timely and targeted care.

摘要

背景

了解有助于识别心力衰竭(HF)再入院风险增加的患者的心理社会特征,可能有助于及时进行有针对性的护理。

目的

我们假设从电子健康记录(EHR)中提取的某些心理社会特征与 30 天内的医院再入院风险增加有关。

方法

我们确定了 15 个再入院的心理社会预测因素。其中 11 个是从电子病历中提取的(6 个来自结构化数据源,5 个来自非结构化临床记录)。然后,我们分析了这些因素与 729 名 HF 住院患者在接下来 30 天内再次住院的可能性之间的关联。最后,我们开发了一个多变量预测模型来识别再入院风险高的个体。

结果

我们发现了五个与医院再入院风险增加相关的特征:痴呆、抑郁、依从性、拒绝/拒绝服务以及错过临床预约:前四个特征来自非结构化临床记录,而最后一个特征来自结构化数据源。

结论

非结构化临床记录包含有关心理社会风险因素与 HF 再入院风险增加之间关系的重要知识,如果仅考虑结构化数据,这些知识可能会被遗漏。这种基于 EHR 的知识可以自动收集,从而实现及时和有针对性的护理。

相似文献

3
Determinants of early readmission after hospitalization for heart failure.
Can J Cardiol. 2014 Jun;30(6):612-8. doi: 10.1016/j.cjca.2014.02.017. Epub 2014 Feb 28.
4
Do Non-Clinical Factors Improve Prediction of Readmission Risk?: Results From the Tele-HF Study.
JACC Heart Fail. 2016 Jan;4(1):12-20. doi: 10.1016/j.jchf.2015.07.017. Epub 2015 Dec 2.
5
Hospital Readmission and Social Risk Factors Identified from Physician Notes.
Health Serv Res. 2018 Apr;53(2):1110-1136. doi: 10.1111/1475-6773.12670. Epub 2017 Mar 13.
8
Heart Failure Home Management Challenges and Reasons for Readmission: a Qualitative Study to Understand the Patient's Perspective.
J Gen Intern Med. 2018 Oct;33(10):1700-1707. doi: 10.1007/s11606-018-4542-3. Epub 2018 Jul 10.
9
Predictors of Heart Failure Readmission in a High-Risk Primarily Hispanic Population in a Rural Setting.
J Cardiovasc Nurs. 2019 May/Jun;34(3):267-274. doi: 10.1097/JCN.0000000000000567.
10
Patient and clinical characteristics that heighten risk for heart failure readmission.
Res Social Adm Pharm. 2017 Nov;13(6):1070-1081. doi: 10.1016/j.sapharm.2016.11.002. Epub 2016 Nov 10.

引用本文的文献

1
Combining text mining with clinical decision support in clinical practice: a scoping review.
J Am Med Inform Assoc. 2023 Feb 16;30(3):588-603. doi: 10.1093/jamia/ocac240.
3
Patient Perspectives on Home-Based Care and Remote Monitoring in Heart Failure: A Qualitative Study.
J Prim Care Community Health. 2022 Jan-Dec;13:21501319221133672. doi: 10.1177/21501319221133672.
4
Published models that predict hospital readmission: a critical appraisal.
BMJ Open. 2021 Aug 3;11(8):e044964. doi: 10.1136/bmjopen-2020-044964.
6
Efficient goal attainment and engagement in a care manager system using unstructured notes.
J Am Med Inform Assoc. 2020 Mar 6;3(1):62-9. doi: 10.1093/jamiaopen/ooaa001.
8
Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review.
JMIR Med Inform. 2019 Apr 27;7(2):e12239. doi: 10.2196/12239.
9
Analysis of an Internet Community about Pneumothorax and the Importance of Accurate Information about the Disease.
Korean J Thorac Cardiovasc Surg. 2018 Apr;51(2):85-91. doi: 10.5090/kjtcs.2018.51.2.85. Epub 2018 Apr 5.
10
Dementia and Hospital Readmission Rates: A Systematic Review.
Dement Geriatr Cogn Dis Extra. 2017 Oct 19;7(3):346-353. doi: 10.1159/000481502. eCollection 2017 Sep-Dec.

本文引用的文献

1
Postdischarge assessment after a heart failure hospitalization: the next step forward.
Circulation. 2010 Nov 2;122(18):1782-5. doi: 10.1161/CIRCULATIONAHA.110.982207. Epub 2010 Oct 18.
4
Promoting patient uptake and adherence in cardiac rehabilitation.
Cochrane Database Syst Rev. 2010 Jul 7(7):CD007131. doi: 10.1002/14651858.CD007131.pub2.
5
Use of remote monitoring to improve outcomes in patients with heart failure: a pilot trial.
Int J Telemed Appl. 2010;2010:870959. doi: 10.1155/2010/870959. Epub 2010 May 19.
6
Does cognitive impairment predict poor self-care in patients with heart failure?
Eur J Heart Fail. 2010 May;12(5):508-15. doi: 10.1093/eurjhf/hfq042. Epub 2010 Mar 30.
8
Heart disease and stroke statistics--2010 update: a report from the American Heart Association.
Circulation. 2010 Feb 23;121(7):e46-e215. doi: 10.1161/CIRCULATIONAHA.109.192667. Epub 2009 Dec 17.
9
Depressive symptoms and outcomes in patients with heart failure: data from the COACH study.
Eur J Heart Fail. 2009 Dec;11(12):1202-7. doi: 10.1093/eurjhf/hfp155.
10
Recent national trends in readmission rates after heart failure hospitalization.
Circ Heart Fail. 2010 Jan;3(1):97-103. doi: 10.1161/CIRCHEARTFAILURE.109.885210. Epub 2009 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验