Suppr超能文献

随时间变化的医学图像模式的综合可视化。

Integrative visualization of temporally varying medical image patterns.

作者信息

Soh Jung, Xiao Mei, Do Thao, Meruvia-Pastor Oscar, Sensen Christoph W

机构信息

Visual Genomics Centre, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.

出版信息

J Integr Bioinform. 2011 Jul 21;8(2):161. doi: 10.2390/biecoll-jib-2011-161.

Abstract

We have developed a tool for the visualization of temporal changes of disease patterns, using stacks of medical images collected in time-series experiments. With this tool, users can generate 3D surface models representing disease patterns and observe changes over time in size, shape, and location of clinically significant image patterns. Statistical measurements of the volume of the observed disease patterns can be performed simultaneously. Spatial data integration occurs through the combination of 2D slices of an image stack into a 3D surface model. Temporal integration occurs through the sequential visualization of the 3D models from different time points. Visual integration enables the tool to show 2D images, 3D models and statistical data simultaneously. As an example, the tool has been used to visualize brain MRI scans of several multiple sclerosis patients. It has been developed in Java™, to ensure portability and platform independence, with a user-friendly interface and can be downloaded free of charge for academic users.

摘要

我们开发了一种工具,用于可视化疾病模式的时间变化,该工具使用在时间序列实验中收集的医学图像堆栈。借助此工具,用户可以生成代表疾病模式的3D表面模型,并观察临床上重要图像模式的大小、形状和位置随时间的变化。同时,可以对观察到的疾病模式的体积进行统计测量。空间数据集成通过将图像堆栈的2D切片组合成3D表面模型来实现。时间集成通过对来自不同时间点的3D模型进行顺序可视化来实现。视觉集成使该工具能够同时显示2D图像、3D模型和统计数据。例如,该工具已被用于可视化多名多发性硬化症患者的脑部磁共振成像扫描。它是用Java™开发的,以确保可移植性和平台独立性,具有用户友好的界面,学术用户可以免费下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验