Suppr超能文献

CuSi(n) 团簇中铜吸收从外向内的转变:遗传算法密度泛函理论 (DFT) 研究

Transition from exo- to endo- Cu absorption in CuSi(n) clusters: A Genetic Algorithms Density Functional Theory (DFT) Study.

作者信息

Oña Ofelia B, Ferraro Marta B, Facelli Julio C

机构信息

Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina,

出版信息

Mol Simul. 2011 Jan 1;37(8):678-688. doi: 10.1080/08927020903583830.

Abstract

The characterization and prediction of the structures of metal silicon clusters is important for nanotechnology research because these clusters can be used as building blocks for nano devices, integrated circuits and solar cells. Several authors have postulated that there is a transition between exo to endo absorption of Cu in Si(n) clusters and showed that for n larger than 9 it is possible to find endohedral clusters. Unfortunately, no global searchers have confirmed this observation, which is based on local optimizations of plausible structures. Here we use parallel Genetic Algorithms (GA), as implemented in our MGAC software, directly coupled with DFT energy calculations to show that the global search of CuSi(n) cluster structures does not find endohedral clusters for n < 8 but finds them for n ≥ 10.

摘要

金属硅团簇结构的表征与预测对纳米技术研究至关重要,因为这些团簇可用作纳米器件、集成电路和太阳能电池的构建单元。几位作者推测,硅(n)团簇中铜的吸收存在从外向内的转变,并表明对于n大于9的情况,有可能找到内包络团簇。不幸的是,没有全局搜索方法证实这一基于合理结构局部优化的观察结果。在此,我们使用在我们的MGAC软件中实现的并行遗传算法(GA),直接与密度泛函理论(DFT)能量计算相结合,以表明对CuSi(n)团簇结构的全局搜索在n < 8时未找到内包络团簇,但在n≥10时找到了它们。

相似文献

3
The geometric structure of silver-doped silicon clusters.银掺杂硅团簇的几何结构。
Chemphyschem. 2014 Feb 3;15(2):328-36. doi: 10.1002/cphc.201300944. Epub 2014 Jan 8.

本文引用的文献

8
Formation of metal-encapsulating Si cage clusters.金属包裹硅笼簇的形成。
Phys Rev Lett. 2001 Feb 26;86(9):1733-6. doi: 10.1103/PhysRevLett.86.1733.
9
On the scalability of parallel genetic algorithms.论并行遗传算法的可扩展性。
Evol Comput. 1999 Winter;7(4):429-49. doi: 10.1162/evco.1999.7.4.429.
10
Generalized Gradient Approximation Made Simple.广义梯度近似简化法
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验