Suppr超能文献

扩展建模温度相关介电性能的微波热消融。

Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation.

机构信息

Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Phys Med Biol. 2011 Aug 21;56(16):5249-64. doi: 10.1088/0031-9155/56/16/011. Epub 2011 Jul 26.

Abstract

Microwaves are a promising source for thermal tumor ablation due to their ability to rapidly heat dispersive biological tissues, often to temperatures in excess of 100 °C. At these high temperatures, tissue dielectric properties change rapidly and, thus, so do the characteristics of energy delivery. Precise knowledge of how tissue dielectric properties change during microwave heating promises to facilitate more accurate simulation of device performance and helps optimize device geometry and energy delivery parameters. In this study, we measured the dielectric properties of liver tissue during high-temperature microwave heating. The resulting data were compiled into either a sigmoidal function of temperature or an integration of the time-temperature curve for both relative permittivity and effective conductivity. Coupled electromagnetic-thermal simulations of heating produced by a single monopole antenna using the new models were then compared to simulations with existing linear and static models, and experimental temperatures in liver tissue. The new sigmoidal temperature-dependent model more accurately predicted experimental temperatures when compared to temperature-time integrated or existing models. The mean percent differences between simulated and experimental temperatures over all times were 4.2% for sigmoidal, 10.1% for temperature-time integration, 27.0% for linear and 32.8% for static models at the antenna input power of 50 W. Correcting for tissue contraction improved agreement for powers up to 75 W. The sigmoidal model also predicted substantial changes in heating pattern due to dehydration. We can conclude from these studies that a sigmoidal model of tissue dielectric properties improves prediction of experimental results. More work is needed to refine and generalize this model.

摘要

微波是一种很有前途的热肿瘤消融源,因为它能够快速加热分散的生物组织,通常温度超过 100°C。在这些高温下,组织介电特性会迅速变化,因此能量传递的特性也会发生变化。精确了解组织介电特性在微波加热过程中的变化,有望促进更准确地模拟器件性能,并有助于优化器件几何形状和能量传递参数。在这项研究中,我们测量了肝组织在高温微波加热过程中的介电特性。将得到的数据编成温度的 S 形函数,或者对相对介电常数和有效电导率的时-温曲线进行积分。然后,使用新模型对单个单极天线加热的电磁-热耦合模拟与使用现有线性和静态模型以及肝组织中的实验温度进行了比较。与温度-时间积分或现有模型相比,新的温度相关 S 形模型更准确地预测了实验温度。在所有时间内,模拟温度与实验温度之间的平均百分比差异分别为 50 W 天线输入功率下 S 形模型为 4.2%,温度-时间积分模型为 10.1%,线性模型为 27.0%,静态模型为 32.8%。在功率高达 75 W 时,对组织收缩进行校正可以提高一致性。S 形模型还预测了由于脱水而导致加热模式的重大变化。从这些研究中可以得出结论,组织介电特性的 S 形模型可以提高对实验结果的预测。需要进一步的工作来改进和推广这种模型。

相似文献

1
Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation.
Phys Med Biol. 2011 Aug 21;56(16):5249-64. doi: 10.1088/0031-9155/56/16/011. Epub 2011 Jul 26.
3
Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz.
Phys Med Biol. 2012 Apr 21;57(8):2309-27. doi: 10.1088/0031-9155/57/8/2309. Epub 2012 Mar 30.
4
Assessment of thermochromic phantoms for characterizing microwave ablation devices.
Med Phys. 2024 Nov;51(11):8442-8453. doi: 10.1002/mp.17404. Epub 2024 Sep 17.
5
Temperature-dependent dielectric properties of liver tissue measured during thermal ablation: toward an improved numerical model.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:230-3. doi: 10.1109/IEMBS.2008.4649132.
7
Broadband Dielectric Properties of Ex Vivo Bovine Liver Tissue Characterized at Ablative Temperatures.
IEEE Trans Biomed Eng. 2021 Jan;68(1):90-98. doi: 10.1109/TBME.2020.2996825. Epub 2020 Dec 21.
8
Numerical simulation of microwave ablation incorporating tissue contraction based on thermal dose.
Phys Med Biol. 2017 Mar 21;62(6):2070-2086. doi: 10.1088/1361-6560/aa5de4. Epub 2017 Feb 2.
10
Investigation of Microwave Ablation Process in Sweet Potatoes as Substitute Liver.
Sensors (Basel). 2021 Jun 4;21(11):3894. doi: 10.3390/s21113894.

引用本文的文献

1
Advancements in microwave ablation for tumor treatment and future directions.
iScience. 2025 Mar 7;28(4):112175. doi: 10.1016/j.isci.2025.112175. eCollection 2025 Apr 18.
2
Effects of non-contact electric fields on the kidneys and livers of tumour-bearing rats.
F1000Res. 2025 Feb 11;12:117. doi: 10.12688/f1000research.110080.3. eCollection 2023.
4
Temperature and state-dependent electrical conductivity of soft biological tissue at hyperthermic temperatures.
Int J Hyperthermia. 2024;41(1):2422509. doi: 10.1080/02656736.2024.2422509. Epub 2024 Nov 10.
5
Temperature Distribution on Classical Two Needles IRE Setup Versus a Single Needle Prototype.
Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241288342. doi: 10.1177/15330338241288342.
6
Assessment of thermochromic phantoms for characterizing microwave ablation devices.
Med Phys. 2024 Nov;51(11):8442-8453. doi: 10.1002/mp.17404. Epub 2024 Sep 17.
7
8
Computational Modeling of Thermal Ablation Zones in the Liver: A Systematic Review.
Cancers (Basel). 2023 Dec 1;15(23):5684. doi: 10.3390/cancers15235684.
9
Determining of Ablation Zone in Ex Vivo Bovine Liver Using Time-Shift Measurements.
Cancers (Basel). 2023 Oct 31;15(21):5230. doi: 10.3390/cancers15215230.
10
A Survey of the Thermal Analysis of Implanted Antennas for Wireless Biomedical Devices.
Micromachines (Basel). 2023 Sep 30;14(10):1894. doi: 10.3390/mi14101894.

本文引用的文献

2
Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver and lung.
J Vasc Interv Radiol. 2010 Aug;21(8):1280-6. doi: 10.1016/j.jvir.2010.02.038. Epub 2010 May 27.
3
Finite-element analysis and in vitro experiments of placement configurations using triple antennas in microwave hepatic ablation.
IEEE Trans Biomed Eng. 2009 Nov;56(11):2564-72. doi: 10.1109/TBME.2009.2027128. Epub 2009 Jul 21.
4
Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences?
Curr Probl Diagn Radiol. 2009 May-Jun;38(3):135-43. doi: 10.1067/j.cpradiol.2007.10.001.
5
Temperature-dependent dielectric properties of liver tissue measured during thermal ablation: toward an improved numerical model.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:230-3. doi: 10.1109/IEMBS.2008.4649132.
7
Analysis of tissue and arterial blood temperatures in the resting human forearm.
J Appl Physiol. 1948 Aug;1(2):93-122. doi: 10.1152/jappl.1948.1.2.93.
9
Microwave Ablation With a Triaxial Antenna: Results in ex vivo Bovine Liver.
IEEE Trans Microw Theory Tech. 2005 Jan;53(1):215-220. doi: 10.1109/TMTT.2004.839308.
10
Expanding the bioheat equation to include tissue internal water evaporation during heating.
IEEE Trans Biomed Eng. 2007 Aug;54(8):1382-8. doi: 10.1109/TBME.2007.890740.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验