Suppr超能文献

浦肯野细胞简单锋电位放电中肢体运动学的表示在多个任务中是保守的。

Representation of limb kinematics in Purkinje cell simple spike discharge is conserved across multiple tasks.

机构信息

Dept. of Neuroscience, Univ. of Minnesota, 2001 Sixth St. S.E., Minneapolis, MN 55455, USA.

出版信息

J Neurophysiol. 2011 Nov;106(5):2232-47. doi: 10.1152/jn.00886.2010. Epub 2011 Jul 27.

Abstract

Encoding of movement kinematics in Purkinje cell simple spike discharge has important implications for hypotheses of cerebellar cortical function. Several outstanding questions remain regarding representation of these kinematic signals. It is uncertain whether kinematic encoding occurs in unpredictable, feedback-dependent tasks or kinematic signals are conserved across tasks. Additionally, there is a need to understand the signals encoded in the instantaneous discharge of single cells without averaging across trials or time. To address these questions, this study recorded Purkinje cell firing in monkeys trained to perform a manual random tracking task in addition to circular tracking and center-out reach. Random tracking provides for extensive coverage of kinematic workspaces. Direction and speed errors are significantly greater during random than circular tracking. Cross-correlation analyses comparing hand and target velocity profiles show that hand velocity lags target velocity during random tracking. Correlations between simple spike firing from 120 Purkinje cells and hand position, velocity, and speed were evaluated with linear regression models including a time constant, τ, as a measure of the firing lead/lag relative to the kinematic parameters. Across the population, velocity accounts for the majority of simple spike firing variability (63 ± 30% of R(adj)(2)), followed by position (28 ± 24% of R(adj)(2)) and speed (11 ± 19% of R(adj)(2)). Simple spike firing often leads hand kinematics. Comparison of regression models based on averaged vs. nonaveraged firing and kinematics reveals lower R(adj)(2) values for nonaveraged data; however, regression coefficients and τ values are highly similar. Finally, for most cells, model coefficients generated from random tracking accurately estimate simple spike firing in either circular tracking or center-out reach. These findings imply that the cerebellum controls movement kinematics, consistent with a forward internal model that predicts upcoming limb kinematics.

摘要

浦肯野细胞简单锋电位放电中运动运动学的编码对小脑皮层功能的假设具有重要意义。关于这些运动信号的表示,仍有几个悬而未决的问题。不确定运动编码是否发生在不可预测的、依赖反馈的任务中,或者运动信号是否在任务之间保持不变。此外,需要了解在没有跨试验或时间平均的情况下单个细胞的瞬时放电中编码的信号。为了解决这些问题,本研究在猴子中记录了浦肯野细胞的放电,这些猴子被训练在执行手动随机跟踪任务的同时执行圆形跟踪和中心外伸任务。随机跟踪提供了对运动学工作空间的广泛覆盖。在随机跟踪期间,方向和速度误差明显大于圆形跟踪。比较手和目标速度曲线的互相关分析表明,在手随机跟踪期间,手速度滞后于目标速度。用包括时间常数τ在内的线性回归模型评估 120 个浦肯野细胞的简单锋电位放电与手位置、速度和速度之间的相关性,τ 作为相对于运动学参数的放电领先/滞后的度量。在整个群体中,速度占简单锋电位放电可变性的大部分(63 ± 30%的 R(adj)(2)),其次是位置(28 ± 24%的 R(adj)(2))和速度(11 ± 19%的 R(adj)(2))。简单锋电位放电通常领先于手部运动学。基于平均与非平均放电和运动学的回归模型比较显示,非平均数据的 R(adj)(2)值较低;然而,回归系数和 τ 值非常相似。最后,对于大多数细胞,从随机跟踪生成的模型系数可以准确估计圆形跟踪或中心外伸运动中的简单锋电位放电。这些发现意味着小脑控制运动运动学,与预测即将到来的肢体运动学的前向内部模型一致。

相似文献

6
Climbing Fibers Control Purkinje Cell Representations of Behavior.攀爬纤维控制行为的浦肯野细胞表征。
J Neurosci. 2017 Feb 22;37(8):1997-2009. doi: 10.1523/JNEUROSCI.3163-16.2017. Epub 2017 Jan 11.
7
Climbing fibers predict movement kinematics and performance errors.攀缘纤维可预测运动学和性能误差。
J Neurophysiol. 2017 Sep 1;118(3):1888-1902. doi: 10.1152/jn.00266.2017. Epub 2017 Jul 12.

引用本文的文献

4
Cerebellar associative learning underlies skilled reach adaptation.小脑联合学习是熟练的伸手适应的基础。
Nat Neurosci. 2023 Jun;26(6):1068-1079. doi: 10.1038/s41593-023-01347-y. Epub 2023 May 29.
9
Population coding in the cerebellum: a machine learning perspective.小脑的群体编码:机器学习视角。
J Neurophysiol. 2020 Dec 1;124(6):2022-2051. doi: 10.1152/jn.00449.2020. Epub 2020 Oct 28.

本文引用的文献

1
Internal models in the cerebellum.小脑的内模式。
Trends Cogn Sci. 1998 Sep 1;2(9):338-47. doi: 10.1016/s1364-6613(98)01221-2.
5
Cerebellum predicts the future motor state.小脑预测未来的运动状态。
Cerebellum. 2008;7(4):583-8. doi: 10.1007/s12311-008-0059-3.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验