Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom.
Semin Cell Dev Biol. 2011 Oct;22(8):875-85. doi: 10.1016/j.semcdb.2011.07.010. Epub 2011 Jul 23.
Over the last decade or so, sophisticated technological advances in array-based genomics have firmly established the contribution of structural alterations in the human genome to a variety of complex developmental disorders, and also to diseases such as cancer. In fact, multiple 'novel' disorders have been identified as a direct consequence of these advances. Our understanding of the molecular events leading to the generation of these structural alterations is also expanding. Many of the models proposed to explain these complex rearrangements involve DNA breakage and the coordinated action of DNA replication, repair and recombination machinery. Here, and within the context of Genomic Disorders, we will briefly overview the principal models currently invoked to explain these chromosomal rearrangements, including Non-Allelic Homologous Recombination (NAHR), Fork Stalling Template Switching (FoSTeS), Microhomology Mediated Break-Induced Repair (MMBIR) and Breakage-fusion-bridge cycle (BFB). We will also discuss an unanticipated consequence of certain copy number variations (CNVs) whereby the CNVs potentially compromise fundamental processes controlling genomic stability including DNA replication and the DNA damage response. We will illustrate these using specific examples including Genomic Disorders (DiGeorge/Veleocardiofacial syndrome, HSA21 segmental aneuploidy and rec (3) syndrome) and cell-based model systems. Finally, we will review some of the recent exciting developments surrounding specific CNVs and their contribution to cancer development as well as the latest model for cancer genome rearrangement; 'chromothripsis'.
在过去的十年左右,基于阵列的基因组学的复杂技术进步已经牢固地确立了人类基因组结构改变对多种复杂发育障碍的贡献,也对癌症等疾病有贡献。事实上,由于这些进步,已经确定了多种“新型”疾病。我们对导致这些结构改变的分子事件的理解也在扩大。许多用来解释这些复杂重排的模型都涉及 DNA 断裂和 DNA 复制、修复和重组机制的协调作用。在这里,以及在基因组疾病的背景下,我们将简要概述目前用来解释这些染色体重排的主要模型,包括非等位同源重组(NAHR)、叉停滞模板转换(FoSTeS)、微同源介导的断裂诱导修复(MMBIR)和断裂-融合-桥循环(BFB)。我们还将讨论某些拷贝数变异(CNVs)的一个意外后果,即 CNVs 可能危及包括 DNA 复制和 DNA 损伤反应在内的控制基因组稳定性的基本过程。我们将使用特定的例子来说明这些,包括基因组疾病(DiGeorge/Veleocardiofacial 综合征、HSA21 片段性非整倍体和 rec(3) 综合征)和基于细胞的模型系统。最后,我们将回顾一些围绕特定 CNVs 的最新激动人心的发展及其对癌症发展的贡献,以及癌症基因组重排的最新模型;“chromothripsis”。