Bioinformatics Center, Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P.R. China.
BMC Bioinformatics. 2011 Aug 2;12:315. doi: 10.1186/1471-2105-12-315.
Differential coexpression analysis (DCEA) is increasingly used for investigating the global transcriptional mechanisms underlying phenotypic changes. Current DCEA methods mostly adopt a gene connectivity-based strategy to estimate differential coexpression, which is characterized by comparing the numbers of gene neighbors in different coexpression networks. Although it simplifies the calculation, this strategy mixes up the identities of different coexpression neighbors of a gene, and fails to differentiate significant differential coexpression changes from those trivial ones. Especially, the correlation-reversal is easily missed although it probably indicates remarkable biological significance.
We developed two link-based quantitative methods, DCp and DCe, to identify differentially coexpressed genes and gene pairs (links). Bearing the uniqueness of exploiting the quantitative coexpression change of each gene pair in the coexpression networks, both methods proved to be superior to currently popular methods in simulation studies. Re-mining of a publicly available type 2 diabetes (T2D) expression dataset from the perspective of differential coexpression analysis led to additional discoveries than those from differential expression analysis.
This work pointed out the critical weakness of current popular DCEA methods, and proposed two link-based DCEA algorithms that will make contribution to the development of DCEA and help extend it to a broader spectrum.
差异共表达分析(DCEA)越来越多地用于研究表型变化背后的全局转录机制。目前的 DCEA 方法大多采用基于基因连通性的策略来估计差异共表达,其特点是比较不同共表达网络中基因邻居的数量。虽然这种策略简化了计算,但它混淆了一个基因的不同共表达邻居的身份,并且无法区分重要的差异共表达变化和那些琐碎的变化。特别是,尽管可能表明显著的生物学意义,但容易错过相关性反转。
我们开发了两种基于链接的定量方法,DCp 和 DCe,用于识别差异共表达的基因和基因对(链接)。这两种方法都利用了共表达网络中每个基因对的定量共表达变化的独特性,在模拟研究中被证明优于目前流行的方法。从差异共表达分析的角度重新挖掘一个公开的 2 型糖尿病(T2D)表达数据集,比从差异表达分析中获得的发现更多。
这项工作指出了当前流行的 DCEA 方法的关键弱点,并提出了两种基于链接的 DCEA 算法,这将有助于 DCEA 的发展,并有助于将其扩展到更广泛的范围。