Suppr超能文献

肽酰核苷抗生素中氨基核糖部分的生物合成来源和形成机制。

Biosynthetic origin and mechanism of formation of the aminoribosyl moiety of peptidyl nucleoside antibiotics.

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536, USA.

出版信息

J Am Chem Soc. 2011 Sep 14;133(36):14452-9. doi: 10.1021/ja206304k. Epub 2011 Aug 22.

Abstract

Several peptidyl nucleoside antibiotics that inhibit bacterial translocase I involved in peptidoglycan cell wall biosynthesis contain an aminoribosyl moiety, an unusual sugar appendage in natural products. We present here the delineation of the biosynthetic pathway for this moiety upon in vitro characterization of four enzymes (LipM-P) that are functionally assigned as (i) LipO, an L-methionine:uridine-5'-aldehyde aminotransferase; (ii) LipP, a 5'-amino-5'-deoxyuridine phosphorylase; (iii) LipM, a UTP:5-amino-5-deoxy-α-D-ribose-1-phosphate uridylyltransferase; and (iv) LipN, a 5-amino-5-deoxyribosyltransferase. The cumulative results reveal a unique ribosylation pathway that is highlighted by, among other features, uridine-5'-monophosphate as the source of the sugar, a phosphorylase strategy to generate a sugar-1-phosphate, and a primary amine-requiring nucleotidylyltransferase that generates the NDP-sugar donor.

摘要

几种抑制参与肽聚糖细胞壁生物合成的细菌转位酶 I 的肽核苷抗生素含有一个氨基核糖部分,这是天然产物中一种不寻常的糖附加物。我们在体外表征四个酶(LipM-P)的功能分配为 (i) LipO,L-甲硫氨酸:尿嘧啶-5'-醛氨基转移酶;(ii) LipP,5'-氨基-5'-脱氧尿苷磷酸化酶;(iii) LipM,UTP:5-氨基-5-脱氧-α-D-核糖-1-磷酸尿苷酰转移酶;和 (iv) LipN,5-氨基-5-脱氧核糖基转移酶。累积的结果揭示了一种独特的核糖基化途径,其特点包括尿苷-5'-单磷酸作为糖的来源、磷酸化酶策略生成糖-1-磷酸以及需要伯胺的核苷酰基转移酶生成 NDP-糖供体。

相似文献

1
Biosynthetic origin and mechanism of formation of the aminoribosyl moiety of peptidyl nucleoside antibiotics.
J Am Chem Soc. 2011 Sep 14;133(36):14452-9. doi: 10.1021/ja206304k. Epub 2011 Aug 22.
2
Mechanism of action of nucleoside antibacterial natural product antibiotics.
J Antibiot (Tokyo). 2019 Dec;72(12):865-876. doi: 10.1038/s41429-019-0227-3. Epub 2019 Aug 30.
3
Recent advances in the biosynthesis of nucleoside antibiotics.
J Antibiot (Tokyo). 2019 Dec;72(12):913-923. doi: 10.1038/s41429-019-0236-2. Epub 2019 Sep 25.
4
Enzymatic Synthesis of the Ribosylated Glycyl-Uridine Disaccharide Core of Peptidyl Nucleoside Antibiotics.
J Org Chem. 2018 Jul 6;83(13):7239-7249. doi: 10.1021/acs.joc.8b00855. Epub 2018 May 24.
7
Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes.
J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):401-17. doi: 10.1007/s10295-015-1636-3. Epub 2015 Jul 8.
8
Chemical logic and enzymatic machinery for biological assembly of peptidyl nucleoside antibiotics.
ACS Chem Biol. 2011 Oct 21;6(10):1000-7. doi: 10.1021/cb200284p. Epub 2011 Aug 25.
10
Caprazamycins: Biosynthesis and structure activity relationship studies.
Int J Med Microbiol. 2019 Jul;309(5):319-324. doi: 10.1016/j.ijmm.2019.05.004. Epub 2019 May 24.

引用本文的文献

1
The TetR-like regulator Sco4385 and Crp-like regulator Sco3571 modulate heterologous production of antibiotics in M512.
Appl Environ Microbiol. 2025 May 21;91(5):e0231524. doi: 10.1128/aem.02315-24. Epub 2025 Apr 4.
2
Biosynthesis and Genome Mining Potentials of Nucleoside Natural Products.
Chembiochem. 2023 Sep 1;24(17):e202300342. doi: 10.1002/cbic.202300342. Epub 2023 Jul 26.
3
Pseudouridine-Modifying Enzymes SapB and SapH Control Entry into the Pseudouridimycin Biosynthetic Pathway.
ACS Chem Biol. 2023 Apr 21;18(4):794-802. doi: 10.1021/acschembio.2c00826. Epub 2023 Apr 2.
4
-Adenosylmethionine: more than just a methyl donor.
Nat Prod Rep. 2023 Sep 20;40(9):1521-1549. doi: 10.1039/d2np00086e.
6
Pyridoxal-5'-phosphate-dependent alkyl transfer in nucleoside antibiotic biosynthesis.
Nat Chem Biol. 2020 Aug;16(8):904-911. doi: 10.1038/s41589-020-0548-3. Epub 2020 Jun 1.
7
Recent advances in the biosynthesis of nucleoside antibiotics.
J Antibiot (Tokyo). 2019 Dec;72(12):913-923. doi: 10.1038/s41429-019-0236-2. Epub 2019 Sep 25.
8
Mechanism of action of nucleoside antibacterial natural product antibiotics.
J Antibiot (Tokyo). 2019 Dec;72(12):865-876. doi: 10.1038/s41429-019-0227-3. Epub 2019 Aug 30.
9
Oligonucleotide analogues with cationic backbone linkages.
Beilstein J Org Chem. 2018 Jun 4;14:1293-1308. doi: 10.3762/bjoc.14.111. eCollection 2018.
10
Enzymatic Synthesis of the Ribosylated Glycyl-Uridine Disaccharide Core of Peptidyl Nucleoside Antibiotics.
J Org Chem. 2018 Jul 6;83(13):7239-7249. doi: 10.1021/acs.joc.8b00855. Epub 2018 May 24.

本文引用的文献

1
Nine enzymes are required for assembly of the pacidamycin group of peptidyl nucleoside antibiotics.
J Am Chem Soc. 2011 Apr 13;133(14):5240-3. doi: 10.1021/ja2011109. Epub 2011 Mar 18.
4
Identification of the gene cluster involved in muraymycin biosynthesis from Streptomyces sp. NRRL 30471.
Mol Biosyst. 2011 Mar;7(3):920-7. doi: 10.1039/c0mb00237b. Epub 2010 Dec 23.
5
Nucleotidylation of unsaturated carbasugar in validamycin biosynthesis.
Org Biomol Chem. 2011 Jan 21;9(2):438-49. doi: 10.1039/c0ob00475h. Epub 2010 Oct 27.
6
Identification of the biosynthetic gene cluster for the pacidamycin group of peptidyl nucleoside antibiotics.
Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16828-33. doi: 10.1073/pnas.1011557107. Epub 2010 Sep 8.
9
The biosynthesis of liposidomycin-like A-90289 antibiotics featuring a new type of sulfotransferase.
Chembiochem. 2010 Jan 25;11(2):184-90. doi: 10.1002/cbic.200900665.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验