Suppr超能文献

鸟类出生地扩散距离的预测模型为研究对景观变化的响应提供了先验信息。

A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change.

机构信息

School of Botany, University of Melbourne, Victoria, Australia.

出版信息

J Anim Ecol. 2012 Jan;81(1):14-23. doi: 10.1111/j.1365-2656.2011.01891.x. Epub 2011 Aug 5.

Abstract
  1. Informative Bayesian priors can improve the precision of estimates in ecological studies or estimate parameters for which little or no information is available. While Bayesian analyses are becoming more popular in ecology, the use of strongly informative priors remains rare, perhaps because examples of informative priors are not readily available in the published literature. 2. Dispersal distance is an important ecological parameter, but is difficult to measure and estimates are scarce. General models that provide informative prior estimates of dispersal distances will therefore be valuable. 3. Using a world-wide data set on birds, we develop a predictive model of median natal dispersal distance that includes body mass, wingspan, sex and feeding guild. This model predicts median dispersal distance well when using the fitted data and an independent test data set, explaining up to 53% of the variation. 4. Using this model, we predict a priori estimates of median dispersal distance for 57 woodland-dependent bird species in northern Victoria, Australia. These estimates are then used to investigate the relationship between dispersal ability and vulnerability to landscape-scale changes in habitat cover and fragmentation. 5. We find evidence that woodland bird species with poor predicted dispersal ability are more vulnerable to habitat fragmentation than those species with longer predicted dispersal distances, thus improving the understanding of this important phenomenon. 6. The value of constructing informative priors from existing information is also demonstrated. When used as informative priors for four example species, predicted dispersal distances reduced the 95% credible intervals of posterior estimates of dispersal distance by 8-19%. Further, should we have wished to collect information on avian dispersal distances and relate it to species' responses to habitat loss and fragmentation, data from 221 individuals across 57 species would have been required to obtain estimates with the same precision as those provided by the general model.
摘要
  1. 信息先验可以提高生态学研究中估计值的精度,或者估计那些几乎没有或没有信息的参数。虽然贝叶斯分析在生态学中越来越受欢迎,但强烈信息先验的使用仍然很少,也许是因为信息先验的例子在已发表的文献中不容易获得。

  2. 扩散距离是一个重要的生态参数,但很难测量,估计也很少。因此,提供扩散距离信息先验估计的通用模型将是有价值的。

  3. 我们使用一个全球性的鸟类数据集,开发了一个预测中值出生地扩散距离的模型,该模型包括体重、翼展、性别和觅食群体。当使用拟合数据和独立测试数据集时,该模型可以很好地预测中值扩散距离,解释了高达 53%的变异。

  4. 使用这个模型,我们预测了澳大利亚北部维多利亚州 57 种林地依赖鸟类物种的中值扩散距离的先验估计。然后,这些估计值被用于研究扩散能力与栖息地覆盖和破碎化的景观尺度变化之间的关系。

  5. 我们发现,预测扩散能力差的林地鸟类物种比那些预测扩散距离较长的物种更容易受到栖息地破碎化的影响,从而提高了对这一重要现象的理解。

  6. 还证明了从现有信息构建信息先验的价值。当将其用作四个示例物种的信息先验时,预测的扩散距离将后验估计的扩散距离的 95%置信区间缩小了 8-19%。此外,如果我们希望收集有关鸟类扩散距离的信息,并将其与物种对栖息地丧失和破碎化的反应联系起来,那么需要从 57 个物种的 221 个个体中收集数据,才能获得与通用模型提供的精度相同的估计值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验