Suppr超能文献

活性氧(ROS)诱导完整心肌中 ROS 释放的生物物理特性和功能后果。

Biophysical properties and functional consequences of reactive oxygen species (ROS)-induced ROS release in intact myocardium.

机构信息

Cardiovascular Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.

出版信息

J Physiol. 2011 Nov 1;589(Pt 21):5167-79. doi: 10.1113/jphysiol.2011.214239. Epub 2011 Aug 8.

Abstract

Reactive oxygen species (ROS)-induced ROS release (RIRR) is a fundamental mechanism by which cardiac mitochondria respond to elevated ROS levels by stimulating endogenous ROS production in a regenerative, autocatalytic process that ultimately results in global oxidative stress (OS), cellular dysfunction and death. Despite elegant studies describing the phenomenon of RIRR under artificial conditions such as photo-induced oxidation of discrete regions within cardiomyocytes, the existence, biophysical properties and functional consequences of RIRR in intact myocardium remain unclear. Here, we used a semi-quantitative approach of optical superoxide (O(2)(-)) mapping using dihydroethidium (DHE) fluorescence to explore RIRR, its arrhythmic consequences and underlying mechanisms in intact myocardium. Initially, perfusion of rat hearts with 200 μM H(2)O(2) for 40 min (n = 4) elicited two distinct O(2)(-) peaks that were readily distinguished by their timing and amplitude. The first peak (P1), which was generated rapidly (within 5-8 min of H(2)O(2) perfusion) was associated with a relatively limited (10 ± 2%) rise in normalized O(2)(-) levels relative to baseline. In contrast, the second peak (P2) occurred 19-26 min following onset of H(2)O(2) perfusion and was associated with a significantly greater amplitude compared to P1. Spatio-temporal ROS mapping during P2 revealed active O(2)(-) propagation across the myocardium at a velocity of ~20 μm s(-1). Exposure of hearts (n = 18) to a short (10 min) episode of H(2)O(2) perfusion revealed consistent generation of P2 by high (≥200 μM, 8/8) but not lower (≤100 μM, 3/8) H(2)O(2) concentrations (P < 0.03). In these hearts, onset of P2 occurred following, not during, the 10 min OS protocol, consistent with RIRR. Importantly, P2 (+) hearts exhibited a markedly greater (by 3.8-fold, P < 0.001) arrhythmia score compared to P2 (-) hearts. To explore the mechanism underlying RIRR in intact myocardium, hearts were perfused with either cyclosporin A (CsA) or 4-chlorodiazepam (4-Cl-DZP) to inhibit the mitochondrial permeability transition pore (mPTP) or the inner membrane anion channel (IMAC), respectively. Surprisingly, perfusion with CsA failed to suppress (P = 0.75, n.s.) or even delay H(2)O(2)-induced P2 or the incidence of arrhythmias compared to untreated hearts. In sharp contrast, perfusion with 4-Cl-DZP markedly blunted O(2)(-) levels during P2, and suppressed the incidence of sustained ventricular tachycardia or ventricular fibrillation (VT/VF). Finally, perfusion of hearts with the synthetic superoxide dismutase/catalase mimetic EUK-134 completely abolished the H(2)O(2)-mediated RIRR response as well as the incidence of arrhythmias. These findings extend the concept of RIRR to the level of the intact heart, establish regenerative O(2)(-) production as the mediator of RIRR-related arrhythmias and reveal their strong dependence on IMAC and not the mPTP in this acute model of OS.

摘要

活性氧物种 (ROS) 诱导的 ROS 释放 (RIRR) 是心肌线粒体对升高的 ROS 水平作出反应的基本机制,它通过在再生、自催化过程中刺激内源性 ROS 产生来实现,最终导致全身性氧化应激 (OS)、细胞功能障碍和死亡。尽管有一些优雅的研究描述了在人工条件下(如心肌细胞内离散区域的光诱导氧化)RIRR 的现象,但完整心肌中 RIRR 的存在、生物物理特性和功能后果仍不清楚。在这里,我们使用半定量的方法,通过二氢乙锭 (DHE) 荧光对超氧化物 (O(2)(-)) 进行光学映射,来探索完整心肌中的 RIRR、其心律失常后果及其潜在机制。最初,用 200 μM H(2)O(2) 灌注大鼠心脏 40 分钟(n = 4),引发了两个明显不同的 O(2)(-) 峰,这两个峰可以通过它们的时间和幅度很容易地区分。第一个峰 (P1) 快速产生(在 H(2)O(2) 灌注后的 5-8 分钟内),与相对有限的(与基线相比增加 10 ± 2%)归一化 O(2)(-) 水平相关。相比之下,第二个峰 (P2) 在 H(2)O(2) 灌注开始后 19-26 分钟出现,与 P1 相比,其幅度明显更大。在 P2 期间进行的时空 ROS 映射显示,在心肌中以约 20 μm s(-1) 的速度发生活性 O(2)(-) 传播。用短暂(10 分钟)的 H(2)O(2) 灌注暴露心脏(n = 18)显示,高浓度(≥200 μM,8/8)但不是低浓度(≤100 μM,3/8)H(2)O(2) 均能一致地产生 P2(P < 0.03)。在这些心脏中,P2 的发生发生在 10 分钟 OS 方案期间之后,而不是期间,这与 RIRR 一致。重要的是,与 P2 (-) 心脏相比,P2 (+) 心脏的心律失常评分明显更高(增加 3.8 倍,P < 0.001)。为了探索完整心肌中 RIRR 的机制,用环孢菌素 A (CsA) 或 4-氯二苯甲酮(4-Cl-DZP)灌注心脏,分别抑制线粒体通透性转换孔 (mPTP) 或内膜阴离子通道 (IMAC)。令人惊讶的是,与未处理的心脏相比,CsA 灌注既不能抑制(P = 0.75,n.s.)也不能延迟 H(2)O(2) 诱导的 P2 或心律失常的发生。与此形成鲜明对比的是,用 4-Cl-DZP 灌注明显降低了 P2 期间的 O(2)(-) 水平,并抑制了持续室性心动过速或心室颤动 (VT/VF) 的发生。最后,用合成超氧化物歧化酶/过氧化氢酶模拟物 EUK-134 灌注心脏,完全消除了 H(2)O(2) 介导的 RIRR 反应以及心律失常的发生。这些发现将 RIRR 的概念扩展到完整心脏的水平,确立了再生性 O(2)(-) 产生作为 RIRR 相关心律失常的介质,并揭示了它们强烈依赖于 IMAC,而不是在这个急性 OS 模型中 mPTP。

相似文献

1
Biophysical properties and functional consequences of reactive oxygen species (ROS)-induced ROS release in intact myocardium.
J Physiol. 2011 Nov 1;589(Pt 21):5167-79. doi: 10.1113/jphysiol.2011.214239. Epub 2011 Aug 8.
2
Transient opening of mitochondrial permeability transition pore by reactive oxygen species protects myocardium from ischemia-reperfusion injury.
Am J Physiol Heart Circ Physiol. 2009 Apr;296(4):H1125-32. doi: 10.1152/ajpheart.00436.2008. Epub 2009 Feb 6.
3
Mitochondrial oscillations and waves in cardiac myocytes: insights from computational models.
Biophys J. 2010 Apr 21;98(8):1428-38. doi: 10.1016/j.bpj.2009.12.4300.
4
A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria.
Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1651-65. doi: 10.1089/ars.2006.8.1651.
5
Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.
Physiol Rev. 2014 Jul;94(3):909-50. doi: 10.1152/physrev.00026.2013.
7
Hypothermia augments reactive oxygen species detected in the guinea pig isolated perfused heart.
Am J Physiol Heart Circ Physiol. 2004 Apr;286(4):H1289-99. doi: 10.1152/ajpheart.00811.2003. Epub 2003 Nov 26.
8
9
Mitochondrial ROS-induced ROS release: an update and review.
Biochim Biophys Acta. 2006 May-Jun;1757(5-6):509-17. doi: 10.1016/j.bbabio.2006.04.029. Epub 2006 May 23.
10
Increased susceptibility of aged hearts to ventricular fibrillation during oxidative stress.
Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1594-605. doi: 10.1152/ajpheart.00579.2009. Epub 2009 Sep 18.

引用本文的文献

1
Mitochondrial network remodeling of the diabetic heart: implications to ischemia related cardiac dysfunction.
Cardiovasc Diabetol. 2024 Jul 18;23(1):261. doi: 10.1186/s12933-024-02357-1.
2
Targeting the Translocator Protein (18 kDa) in Cardiac Diseases: State of the Art and Future Opportunities.
J Med Chem. 2024 Jan 11;67(1):17-37. doi: 10.1021/acs.jmedchem.3c01716. Epub 2023 Dec 19.
4
Cardiovascular effects of immunosuppression agents.
Front Cardiovasc Med. 2022 Sep 21;9:981838. doi: 10.3389/fcvm.2022.981838. eCollection 2022.
5
Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries.
Bioact Mater. 2021 Jun 20;7:47-72. doi: 10.1016/j.bioactmat.2021.06.006. eCollection 2022 Jan.
6
Rho GTPase regulation of reactive oxygen species generation and signalling in platelet function and disease.
Small GTPases. 2021 Sep-Nov;12(5-6):440-457. doi: 10.1080/21541248.2021.1878001. Epub 2021 Apr 12.
7
Use of HO to Cause Oxidative Stress, the Catalase Issue.
Int J Mol Sci. 2020 Nov 30;21(23):9149. doi: 10.3390/ijms21239149.
9
Role of Oxidative Stress in the Genesis of Ventricular Arrhythmias.
Int J Mol Sci. 2020 Jun 12;21(12):4200. doi: 10.3390/ijms21124200.
10
Additive Protective Effects of Delayed Mild Therapeutic Hypothermia and Antioxidants on PC12 Cells Exposed to Oxidative Stress.
Ther Hypothermia Temp Manag. 2021 Jun;11(2):77-87. doi: 10.1089/ther.2019.0034. Epub 2020 Apr 17.

本文引用的文献

1
Adding ROS quenchers to cold K+ cardioplegia reduces superoxide emission during 2-hour global cold cardiac ischemia.
J Cardiovasc Pharmacol Ther. 2012 Mar;17(1):93-101. doi: 10.1177/1074248410389815. Epub 2011 Jan 31.
2
Suppression of re-entrant and multifocal ventricular fibrillation by the late sodium current blocker ranolazine.
J Am Coll Cardiol. 2011 Jan 18;57(3):366-75. doi: 10.1016/j.jacc.2010.07.045.
3
Qo site of mitochondrial complex III is the source of increased superoxide after transient exposure to hydrogen peroxide.
J Mol Cell Cardiol. 2010 Nov;49(5):875-85. doi: 10.1016/j.yjmcc.2010.07.015. Epub 2010 Aug 2.
4
Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling.
Antioxid Redox Signal. 2011 Feb 1;14(3):459-68. doi: 10.1089/ars.2010.3363. Epub 2010 Oct 18.
6
Altered spatiotemporal dynamics of the mitochondrial membrane potential in the hypertrophied heart.
Biophys J. 2010 May 19;98(10):2063-71. doi: 10.1016/j.bpj.2010.01.045.
7
Mitochondrial oscillations and waves in cardiac myocytes: insights from computational models.
Biophys J. 2010 Apr 21;98(8):1428-38. doi: 10.1016/j.bpj.2009.12.4300.
8
A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.
PLoS Comput Biol. 2010 Jan 29;6(1):e1000657. doi: 10.1371/journal.pcbi.1000657.
9
Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth.
Free Radic Biol Med. 2010 Apr 15;48(8):983-1001. doi: 10.1016/j.freeradbiomed.2010.01.028. Epub 2010 Jan 29.
10
Transmural dispersion of repolarization in failing and nonfailing human ventricle.
Circ Res. 2010 Mar 19;106(5):981-91. doi: 10.1161/CIRCRESAHA.109.204891. Epub 2010 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验