Cardiovascular Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
J Physiol. 2011 Nov 1;589(Pt 21):5167-79. doi: 10.1113/jphysiol.2011.214239. Epub 2011 Aug 8.
Reactive oxygen species (ROS)-induced ROS release (RIRR) is a fundamental mechanism by which cardiac mitochondria respond to elevated ROS levels by stimulating endogenous ROS production in a regenerative, autocatalytic process that ultimately results in global oxidative stress (OS), cellular dysfunction and death. Despite elegant studies describing the phenomenon of RIRR under artificial conditions such as photo-induced oxidation of discrete regions within cardiomyocytes, the existence, biophysical properties and functional consequences of RIRR in intact myocardium remain unclear. Here, we used a semi-quantitative approach of optical superoxide (O(2)(-)) mapping using dihydroethidium (DHE) fluorescence to explore RIRR, its arrhythmic consequences and underlying mechanisms in intact myocardium. Initially, perfusion of rat hearts with 200 μM H(2)O(2) for 40 min (n = 4) elicited two distinct O(2)(-) peaks that were readily distinguished by their timing and amplitude. The first peak (P1), which was generated rapidly (within 5-8 min of H(2)O(2) perfusion) was associated with a relatively limited (10 ± 2%) rise in normalized O(2)(-) levels relative to baseline. In contrast, the second peak (P2) occurred 19-26 min following onset of H(2)O(2) perfusion and was associated with a significantly greater amplitude compared to P1. Spatio-temporal ROS mapping during P2 revealed active O(2)(-) propagation across the myocardium at a velocity of ~20 μm s(-1). Exposure of hearts (n = 18) to a short (10 min) episode of H(2)O(2) perfusion revealed consistent generation of P2 by high (≥200 μM, 8/8) but not lower (≤100 μM, 3/8) H(2)O(2) concentrations (P < 0.03). In these hearts, onset of P2 occurred following, not during, the 10 min OS protocol, consistent with RIRR. Importantly, P2 (+) hearts exhibited a markedly greater (by 3.8-fold, P < 0.001) arrhythmia score compared to P2 (-) hearts. To explore the mechanism underlying RIRR in intact myocardium, hearts were perfused with either cyclosporin A (CsA) or 4-chlorodiazepam (4-Cl-DZP) to inhibit the mitochondrial permeability transition pore (mPTP) or the inner membrane anion channel (IMAC), respectively. Surprisingly, perfusion with CsA failed to suppress (P = 0.75, n.s.) or even delay H(2)O(2)-induced P2 or the incidence of arrhythmias compared to untreated hearts. In sharp contrast, perfusion with 4-Cl-DZP markedly blunted O(2)(-) levels during P2, and suppressed the incidence of sustained ventricular tachycardia or ventricular fibrillation (VT/VF). Finally, perfusion of hearts with the synthetic superoxide dismutase/catalase mimetic EUK-134 completely abolished the H(2)O(2)-mediated RIRR response as well as the incidence of arrhythmias. These findings extend the concept of RIRR to the level of the intact heart, establish regenerative O(2)(-) production as the mediator of RIRR-related arrhythmias and reveal their strong dependence on IMAC and not the mPTP in this acute model of OS.
活性氧物种 (ROS) 诱导的 ROS 释放 (RIRR) 是心肌线粒体对升高的 ROS 水平作出反应的基本机制,它通过在再生、自催化过程中刺激内源性 ROS 产生来实现,最终导致全身性氧化应激 (OS)、细胞功能障碍和死亡。尽管有一些优雅的研究描述了在人工条件下(如心肌细胞内离散区域的光诱导氧化)RIRR 的现象,但完整心肌中 RIRR 的存在、生物物理特性和功能后果仍不清楚。在这里,我们使用半定量的方法,通过二氢乙锭 (DHE) 荧光对超氧化物 (O(2)(-)) 进行光学映射,来探索完整心肌中的 RIRR、其心律失常后果及其潜在机制。最初,用 200 μM H(2)O(2) 灌注大鼠心脏 40 分钟(n = 4),引发了两个明显不同的 O(2)(-) 峰,这两个峰可以通过它们的时间和幅度很容易地区分。第一个峰 (P1) 快速产生(在 H(2)O(2) 灌注后的 5-8 分钟内),与相对有限的(与基线相比增加 10 ± 2%)归一化 O(2)(-) 水平相关。相比之下,第二个峰 (P2) 在 H(2)O(2) 灌注开始后 19-26 分钟出现,与 P1 相比,其幅度明显更大。在 P2 期间进行的时空 ROS 映射显示,在心肌中以约 20 μm s(-1) 的速度发生活性 O(2)(-) 传播。用短暂(10 分钟)的 H(2)O(2) 灌注暴露心脏(n = 18)显示,高浓度(≥200 μM,8/8)但不是低浓度(≤100 μM,3/8)H(2)O(2) 均能一致地产生 P2(P < 0.03)。在这些心脏中,P2 的发生发生在 10 分钟 OS 方案期间之后,而不是期间,这与 RIRR 一致。重要的是,与 P2 (-) 心脏相比,P2 (+) 心脏的心律失常评分明显更高(增加 3.8 倍,P < 0.001)。为了探索完整心肌中 RIRR 的机制,用环孢菌素 A (CsA) 或 4-氯二苯甲酮(4-Cl-DZP)灌注心脏,分别抑制线粒体通透性转换孔 (mPTP) 或内膜阴离子通道 (IMAC)。令人惊讶的是,与未处理的心脏相比,CsA 灌注既不能抑制(P = 0.75,n.s.)也不能延迟 H(2)O(2) 诱导的 P2 或心律失常的发生。与此形成鲜明对比的是,用 4-Cl-DZP 灌注明显降低了 P2 期间的 O(2)(-) 水平,并抑制了持续室性心动过速或心室颤动 (VT/VF) 的发生。最后,用合成超氧化物歧化酶/过氧化氢酶模拟物 EUK-134 灌注心脏,完全消除了 H(2)O(2) 介导的 RIRR 反应以及心律失常的发生。这些发现将 RIRR 的概念扩展到完整心脏的水平,确立了再生性 O(2)(-) 产生作为 RIRR 相关心律失常的介质,并揭示了它们强烈依赖于 IMAC,而不是在这个急性 OS 模型中 mPTP。