Bartosch Lorenz, Freire Hermann, Cardenas Jose Juan Ramos, Kopietz Peter
Institut für Theoretische Physik, Universität Frankfurt, Max-von-Laue Strasse 1, 60438 Frankfurt, Germany.
J Phys Condens Matter. 2009 Jul 29;21(30):305602. doi: 10.1088/0953-8984/21/30/305602. Epub 2009 Jul 8.
We develop a functional renormalization group approach which describes the low-energy single-particle properties of the Anderson impurity model up to intermediate on-site interactions [Formula: see text], where Δ is the hybridization in the wide-band limit. Our method is based on a generalization of a method proposed by Schütz et al (2005 Phys. Rev. B 72 035107), using two independent Hubbard-Stratonovich fields associated with transverse and longitudinal spin fluctuations. Although we do not reproduce the exponentially small Kondo scale in the limit [Formula: see text], the spin fluctuations included in our approach remove the unphysical Stoner instability predicted by mean field theory for U>πΔ. We discuss different decoupling schemes and show that a decoupling which manifestly respects the spin-rotational invariance of the problem gives rise to the lowest quasiparticle weight. To obtain a closed flow equation for the fermionic self-energy we also propose a new scheme of truncation of the functional renormalization group flow equations using Dyson-Schwinger equations to express bosonic vertex functions in terms of fermionic ones.
我们开发了一种泛函重整化群方法,该方法描述了安德森杂质模型的低能单粒子性质,直至中等在位相互作用强度[公式:见正文],其中Δ是宽带极限下的杂化强度。我们的方法基于舒茨等人(2005年《物理评论B》72 035107)提出的一种方法的推广,使用了与横向和纵向自旋涨落相关的两个独立的哈伯德 - 斯特拉托诺维奇场。尽管在极限[公式:见正文]下我们没有重现指数级小的近藤标度,但我们方法中包含的自旋涨落消除了平均场理论预测的对于U > πΔ时的非物理斯通纳不稳定性。我们讨论了不同的解耦方案,并表明一种明显尊重问题自旋旋转不变性的解耦会产生最低的准粒子权重。为了获得费米子自能的封闭流方程,我们还提出了一种新的截断泛函重整化群流方程的方案,利用戴森 - 施温格方程以费米子函数来表示玻色子顶点函数。