Suppr超能文献

唾液酸转移酶 Cst-II 与唾液酸底物结合的结构与动力学分析。

Structural and kinetic analysis of substrate binding to the sialyltransferase Cst-II from Campylobacter jejuni.

机构信息

Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3.

Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1.

出版信息

J Biol Chem. 2011 Oct 14;286(41):35922-35932. doi: 10.1074/jbc.M111.261172. Epub 2011 Aug 5.

Abstract

Sialic acids play important roles in various biological processes and typically terminate the oligosaccharide chains on the cell surfaces of a wide range of organisms, including mammals and bacteria. Their attachment is catalyzed by a set of sialyltransferases with defined specificities both for their acceptor sugars and the position of attachment. However, little is known of how this specificity is encoded. The structure of the bifunctional sialyltransferase Cst-II of the human pathogen Campylobacter jejuni in complex with CMP and the terminal trisaccharide of its natural acceptor (Neu5Ac-α-2,3-Gal-β-1,3-GalNAc) has been solved at 1.95 Å resolution, and its kinetic mechanism was shown to be iso-ordered Bi Bi, consistent with its dual acceptor substrate specificity. The trisaccharide acceptor is seen to bind to the active site of Cst-II through interactions primarily mediated by Asn-51, Tyr-81, and Arg-129. Kinetic and structural analyses of mutants modified at these positions indicate that these residues are critical for acceptor binding and catalysis, thereby providing significant new insight into the kinetic and catalytic mechanism, and acceptor specificity of this pathogen-encoded bifunctional GT-42 sialyltransferase.

摘要

唾液酸在各种生物过程中发挥着重要作用,通常终止多种生物体(包括哺乳动物和细菌)细胞表面的寡糖链。它们的附着由一组唾液酸转移酶催化,这些酶对其受体糖和附着位置具有特定的特异性。然而,对于这种特异性是如何编码的知之甚少。人类病原体空肠弯曲菌的双功能唾液酸转移酶 Cst-II 与 CMP 和其天然受体(Neu5Ac-α-2,3-Gal-β-1,3-GalNAc)的末端三糖复合物的结构已在 1.95Å分辨率下解决,其动力学机制被证明是同序的 Bi Bi,与其双重受体底物特异性一致。三糖受体通过主要由 Asn-51、Tyr-81 和 Arg-129 介导的相互作用与 Cst-II 的活性位点结合。对这些位置进行修饰的突变体的动力学和结构分析表明,这些残基对于受体结合和催化至关重要,从而为该病原体编码的双功能 GT-42 唾液酸转移酶的动力学和催化机制以及受体特异性提供了重要的新见解。

相似文献

1
Structural and kinetic analysis of substrate binding to the sialyltransferase Cst-II from Campylobacter jejuni.
J Biol Chem. 2011 Oct 14;286(41):35922-35932. doi: 10.1074/jbc.M111.261172. Epub 2011 Aug 5.
4
Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog.
Nat Struct Mol Biol. 2004 Feb;11(2):163-70. doi: 10.1038/nsmb720. Epub 2004 Jan 18.
5
Structure and mechanism of the lipooligosaccharide sialyltransferase from Neisseria meningitidis.
J Biol Chem. 2011 Oct 28;286(43):37237-48. doi: 10.1074/jbc.M111.249920. Epub 2011 Aug 31.
7
Crystal structure of alpha/beta-galactoside alpha2,3-sialyltransferase from a luminous marine bacterium, Photobacterium phosphoreum.
FEBS Lett. 2009 Jun 18;583(12):2083-7. doi: 10.1016/j.febslet.2009.05.032. Epub 2009 May 23.
9
Characterization of a multifunctional α2,3-sialyltransferase from Pasteurella dagmatis.
Glycobiology. 2013 Nov;23(11):1293-304. doi: 10.1093/glycob/cwt066. Epub 2013 Aug 22.
10
Unliganded and CMP-Neu5Ac bound structures of human α-2,6-sialyltransferase ST6Gal I at high resolution.
J Struct Biol. 2020 Nov 1;212(2):107628. doi: 10.1016/j.jsb.2020.107628. Epub 2020 Sep 21.

引用本文的文献

1
Affinity-based covalent sialyltransferase probes enabled by ligand-directed chemistry.
Chem Sci. 2025 Jan 13;16(7):3336-3344. doi: 10.1039/d4sc07184k. eCollection 2025 Feb 12.
2
Efficient Enzymatic Glycan Engineering of Extracellular Vesicles Using Nanomaterial-Interfaced Microfluidics.
ACS Appl Mater Interfaces. 2025 Jan 8;17(1):2689-2700. doi: 10.1021/acsami.4c20294. Epub 2024 Dec 19.
3
Parasite-host glycan interactions during Trypanosoma cruzi infection: trans-Sialidase rides the show.
Biochim Biophys Acta Mol Basis Dis. 2020 May 1;1866(5):165692. doi: 10.1016/j.bbadis.2020.165692. Epub 2020 Jan 20.
4
Genetics behind the Biosynthesis of Nonulosonic Acid-Containing Lipooligosaccharides in Campylobacter coli.
J Bacteriol. 2019 Mar 26;201(8). doi: 10.1128/JB.00759-18. Print 2019 Apr 15.
5
On the helical arrangements of protein molecules.
Protein Sci. 2018 Mar;27(3):643-652. doi: 10.1002/pro.3356. Epub 2017 Dec 20.
7
Crossroads between Bacterial and Mammalian Glycosyltransferases.
Front Immunol. 2014 Oct 20;5:492. doi: 10.3389/fimmu.2014.00492. eCollection 2014.
8
Advances in understanding glycosyltransferases from a structural perspective.
Curr Opin Struct Biol. 2014 Oct;28:131-41. doi: 10.1016/j.sbi.2014.08.012. Epub 2014 Sep 19.
10
Characterization of α2,3- and α2,6-sialyltransferases from Helicobacter acinonychis.
Glycobiology. 2012 Jul;22(7):997-1006. doi: 10.1093/glycob/cws071. Epub 2012 Apr 14.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.
Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8. doi: 10.1093/nar/gkn663. Epub 2008 Oct 5.
5
The Jpred 3 secondary structure prediction server.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W197-201. doi: 10.1093/nar/gkn238. Epub 2008 May 7.
6
Sialic acid utilization by bacterial pathogens.
Microbiology (Reading). 2007 Sep;153(Pt 9):2817-2822. doi: 10.1099/mic.0.2007/009480-0.
9
MolProbity: all-atom contacts and structure validation for proteins and nucleic acids.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83. doi: 10.1093/nar/gkm216. Epub 2007 Apr 22.
10
Solving structures of protein complexes by molecular replacement with Phaser.
Acta Crystallogr D Biol Crystallogr. 2007 Jan;63(Pt 1):32-41. doi: 10.1107/S0907444906045975. Epub 2006 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验