Suppr超能文献

膜拓扑结构的定义和鉴定对液泡型 ATP 酶亚基 a 中运输重要的残基。

Definition of membrane topology and identification of residues important for transport in subunit a of the vacuolar ATPase.

机构信息

Graduate Program in Cell and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA.

出版信息

J Biol Chem. 2011 Oct 7;286(40):35176-86. doi: 10.1074/jbc.M111.273409. Epub 2011 Aug 8.

Abstract

Subunit a of the vacuolar H(+)-ATPases plays an important role in proton transport. This membrane-integral 100-kDa subunit is thought to form or contribute to proton-conducting hemichannels that allow protons to gain access to and leave buried carboxyl groups on the proteolipid subunits (c, c', and c″) during proton translocation. We previously demonstrated that subunit a contains a large N-terminal cytoplasmic domain followed by a C-terminal domain containing eight transmembrane (TM) helices. TM7 contains a buried arginine residue (Arg-735) that is essential for proton transport and is located on a helical face that interacts with the proteolipid ring. To further define the topology of the C-terminal domain, the accessibility of 30 unique cysteine residues to the membrane-permeant reagent N-ethylmaleimide and the membrane-impermeant reagent polyethyleneglycol maleimide was determined. The results further define the borders of transmembrane segments in subunit a. To identify additional buried polar and charged residues important in proton transport, 25 sites were individually mutated to hydrophobic amino acids, and the effect on proton transport was determined. These and previous results identify a set of residues important for proton transport located on the cytoplasmic half of TM7 and TM8 and the lumenal half of TM3, TM4, and TM7. Based upon these data, we propose a tentative model in which the cytoplasmic hemichannel is located at the interface of TM7 and TM8 of subunit a and the proteolipid ring, whereas the lumenal hemichannel is located within subunit a at the interface of TM3, TM4, and TM7.

摘要

液泡 H(+)-ATPase 的亚基 a 在质子转运中发挥着重要作用。这种膜整合的 100kDa 亚基被认为形成或有助于质子传导的半通道,使质子能够在质子转运过程中进入并离开埋藏在类脂蛋白亚基(c、c'和 c″)上的羧基。我们之前证明亚基 a 含有一个大的 N 端细胞质结构域,其后是一个 C 端结构域,该结构域包含八个跨膜(TM)螺旋。TM7 包含一个埋藏的精氨酸残基(Arg-735),对于质子转运是必需的,并且位于与类脂蛋白环相互作用的螺旋面上。为了进一步确定 C 端结构域的拓扑结构,确定了 30 个独特的半胱氨酸残基对膜可渗透试剂 N-乙基马来酰亚胺和膜不可渗透试剂聚乙二醇马来酰亚胺的可及性。结果进一步确定了亚基 a 中跨膜片段的边界。为了鉴定在质子转运中重要的其他埋藏的极性和带电残基,将 25 个位点分别突变为疏水性氨基酸,并确定对质子转运的影响。这些和以前的结果确定了一组位于 TM7 和 TM8 的细胞质半通道和 TM3、TM4 和 TM7 的腔侧的对质子转运重要的残基。基于这些数据,我们提出了一个暂定模型,其中细胞质半通道位于亚基 a 的 TM7 和 TM8 与类脂蛋白环的界面处,而腔侧半通道位于亚基 a 内 TM3、TM4 和 TM7 的界面处。

相似文献

1
Definition of membrane topology and identification of residues important for transport in subunit a of the vacuolar ATPase.
J Biol Chem. 2011 Oct 7;286(40):35176-86. doi: 10.1074/jbc.M111.273409. Epub 2011 Aug 8.
2
TM2 but not TM4 of subunit c'' interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking.
J Biol Chem. 2004 Oct 22;279(43):44628-38. doi: 10.1074/jbc.M407345200. Epub 2004 Aug 18.
5
Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation.
Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12397-402. doi: 10.1073/pnas.221291798. Epub 2001 Oct 9.
7
Evidence that there are two copies of subunit c" in V0 complexes in the vacuolar H+-ATPase.
Biochem J. 2002 Sep 15;366(Pt 3):911-9. doi: 10.1042/BJ20020171.
8
Site-directed mutagenesis of the 100-kDa subunit (Vph1p) of the yeast vacuolar (H+)-ATPase.
J Biol Chem. 1996 Sep 13;271(37):22487-93. doi: 10.1074/jbc.271.37.22487.
10
Arrangement of subunits in the proteolipid ring of the V-ATPase.
J Biol Chem. 2007 Nov 23;282(47):34058-65. doi: 10.1074/jbc.M704331200. Epub 2007 Sep 25.

引用本文的文献

2
Structural and functional understanding of disease-associated mutations in V-ATPase subunit a1 and other isoforms.
Front Mol Neurosci. 2023 Jul 3;16:1135015. doi: 10.3389/fnmol.2023.1135015. eCollection 2023.
3
Tender love and disassembly: How a TLDc domain protein breaks the V-ATPase.
Bioessays. 2023 Jul;45(7):e2200251. doi: 10.1002/bies.202200251. Epub 2023 May 15.
4
Structural and Functional Diversity of Two ATP-Driven Plant Proton Pumps.
Int J Mol Sci. 2023 Feb 24;24(5):4512. doi: 10.3390/ijms24054512.
6
The Plant V-ATPase.
Front Plant Sci. 2022 Jun 30;13:931777. doi: 10.3389/fpls.2022.931777. eCollection 2022.
7
The V-ATPases in cancer and cell death.
Cancer Gene Ther. 2022 Nov;29(11):1529-1541. doi: 10.1038/s41417-022-00477-y. Epub 2022 May 3.
9
Structures of a Complete Human V-ATPase Reveal Mechanisms of Its Assembly.
Mol Cell. 2020 Nov 5;80(3):501-511.e3. doi: 10.1016/j.molcel.2020.09.029. Epub 2020 Oct 15.
10
Cryo-EM and MD infer water-mediated proton transport and autoinhibition mechanisms of V complex.
Sci Adv. 2020 Oct 7;6(41). doi: 10.1126/sciadv.abb9605. Print 2020 Oct.

本文引用的文献

1
Regulation and isoform function of the V-ATPases.
Biochemistry. 2010 Jun 15;49(23):4715-23. doi: 10.1021/bi100397s.
3
Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk.
J Exp Biol. 2009 Jun;212(Pt 11):1753-61. doi: 10.1242/jeb.027284.
4
Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells.
J Biol Chem. 2009 Jun 12;284(24):16400-16408. doi: 10.1074/jbc.M901201200. Epub 2009 Apr 14.
5
Structural interactions between transmembrane helices 4 and 5 of subunit a and the subunit c ring of Escherichia coli ATP synthase.
J Biol Chem. 2008 Nov 14;283(46):31726-35. doi: 10.1074/jbc.M803848200. Epub 2008 Sep 11.
7
Subunit a facilitates aqueous access to a membrane-embedded region of subunit c in Escherichia coli F1F0 ATP synthase.
J Biol Chem. 2008 May 2;283(18):12365-72. doi: 10.1074/jbc.M800901200. Epub 2008 Mar 10.
8
Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology.
Nat Rev Mol Cell Biol. 2007 Nov;8(11):917-29. doi: 10.1038/nrm2272.
9
Aqueous access pathways in ATP synthase subunit a. Reactivity of cysteine substituted into transmembrane helices 1, 3, and 5.
J Biol Chem. 2007 Mar 23;282(12):9001-7. doi: 10.1074/jbc.M610848200. Epub 2007 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验