Suppr超能文献

人乳寡糖被婴儿肠道相关双歧杆菌消耗的生理学。

Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria.

机构信息

National Agricultural Research Center for the Hokkaido Region, Sapporo, Hokkaido 062-8555, Japan.

出版信息

J Biol Chem. 2011 Oct 7;286(40):34583-92. doi: 10.1074/jbc.M111.248138. Epub 2011 Aug 9.

Abstract

The bifidogenic effect of human milk oligosaccharides (HMOs) has long been known, yet the precise mechanism underlying it remains unresolved. Recent studies show that some species/subspecies of Bifidobacterium are equipped with genetic and enzymatic sets dedicated to the utilization of HMOs, and consequently they can grow on HMOs; however, the ability to metabolize HMOs has not been directly linked to the actual metabolic behavior of the bacteria. In this report, we clarify the fate of each HMO during cultivation of infant gut-associated bifidobacteria. Bifidobacterium bifidum JCM1254, Bifidobacterium longum subsp. infantis JCM1222, Bifidobacterium longum subsp. longum JCM1217, and Bifidobacterium breve JCM1192 were selected for this purpose and were grown on HMO media containing a main neutral oligosaccharide fraction. The mono- and oligosaccharides in the spent media were labeled with 2-anthranilic acid, and their concentrations were determined at various incubation times using normal phase high performance liquid chromatography. The results reflect the metabolic abilities of the respective bifidobacteria. B. bifidum used secretory glycosidases to degrade HMOs, whereas B. longum subsp. infantis assimilated all HMOs by incorporating them in their intact forms. B. longum subsp. longum and B. breve consumed lacto-N-tetraose only. Interestingly, B. bifidum left degraded HMO metabolites outside of the cell even when the cells initiate vegetative growth, which indicates that the different species/subspecies can share the produced sugars. The predominance of type 1 chains in HMOs and the preferential use of type 1 HMO by infant gut-associated bifidobacteria suggest the coevolution of the bacteria with humans.

摘要

人乳寡糖(HMOs)的双歧因子作用早已为人所知,但其中的具体机制仍未得到解决。最近的研究表明,某些双歧杆菌物种/亚种拥有专门用于利用 HMOs 的基因和酶组,因此它们可以在 HMOs 上生长;然而,代谢 HMOs 的能力并未与细菌的实际代谢行为直接相关。在本报告中,我们阐明了在培养婴儿肠道相关双歧杆菌时每种 HMO 的命运。为此,选择了双歧杆菌 Bifidobacterium bifidum JCM1254、长双歧杆菌 Bifidobacterium longum subsp. infantis JCM1222、长双歧杆菌 Bifidobacterium longum subsp. longum JCM1217 和短双歧杆菌 Bifidobacterium breve JCM1192 用于该目的,并在含有主要中性寡糖部分的 HMO 培养基中进行培养。用 2- 邻氨基苯甲酸标记消耗培养基中的单糖和寡糖,并在不同孵育时间使用正相高效液相色谱法测定其浓度。结果反映了各自双歧杆菌的代谢能力。B. bifidum 使用分泌糖苷酶降解 HMOs,而 B. longum subsp. infantis 则通过完整地吸收所有 HMOs 进行同化。B. longum subsp. longum 和 B. breve 仅消耗乳糖-N-四糖。有趣的是,即使细胞开始进行营养生长,B. bifidum 也会将降解的 HMO 代谢产物留在细胞外,这表明不同的物种/亚种可以共享产生的糖。HMO 中类型 1 链的优势以及婴儿肠道相关双歧杆菌对类型 1 HMO 的优先利用表明了细菌与人类的共同进化。

相似文献

1
Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria.
J Biol Chem. 2011 Oct 7;286(40):34583-92. doi: 10.1074/jbc.M111.248138. Epub 2011 Aug 9.
3
Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve.
Appl Environ Microbiol. 2013 Oct;79(19):6040-9. doi: 10.1128/AEM.01843-13. Epub 2013 Jul 26.
4
Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR.
mSystems. 2022 Oct 26;7(5):e0034322. doi: 10.1128/msystems.00343-22. Epub 2022 Sep 12.
8
Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization.
Appl Environ Microbiol. 2010 Nov;76(22):7373-81. doi: 10.1128/AEM.00675-10. Epub 2010 Aug 27.
9
Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides.
Trends Microbiol. 2010 Jul;18(7):298-307. doi: 10.1016/j.tim.2010.03.008. Epub 2010 Apr 19.
10
Diversification of a Fucosyllactose Transporter within the Genus .
Appl Environ Microbiol. 2022 Jan 25;88(2):e0143721. doi: 10.1128/AEM.01437-21. Epub 2021 Nov 3.

引用本文的文献

5
competition with strains impairs potentially pathogenic growth of on 2'-fucosyllactose.
Gut Microbes. 2025 Dec;17(1):2478306. doi: 10.1080/19490976.2025.2478306. Epub 2025 Mar 18.
8
Early life gut microbiome and its impact on childhood health and chronic conditions.
Gut Microbes. 2025 Dec;17(1):2463567. doi: 10.1080/19490976.2025.2463567. Epub 2025 Feb 7.
10
Associations between human milk EV-miRNAs and oligosaccharide concentrations in human milk.
Front Immunol. 2024 Nov 20;15:1463463. doi: 10.3389/fimmu.2024.1463463. eCollection 2024.

本文引用的文献

1
An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides.
J Biol Chem. 2011 Apr 8;286(14):11909-18. doi: 10.1074/jbc.M110.193359. Epub 2011 Feb 2.
2
Complete genome sequence of Bifidobacterium bifidum S17.
J Bacteriol. 2011 Jan;193(1):301-2. doi: 10.1128/JB.01180-10. Epub 2010 Oct 29.
4
Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging.
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19514-9. doi: 10.1073/pnas.1011100107. Epub 2010 Oct 25.
5
Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization.
Appl Environ Microbiol. 2010 Nov;76(22):7373-81. doi: 10.1128/AEM.00675-10. Epub 2010 Aug 27.
6
Structures and application of oligosaccharides in human milk.
Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(7):731-47. doi: 10.2183/pjab.86.731.
8
Variation of human milk oligosaccharides in relation to milk groups and lactational periods.
Br J Nutr. 2010 Nov;104(9):1261-71. doi: 10.1017/S0007114510002072. Epub 2010 Jun 4.
9
Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides.
Trends Microbiol. 2010 Jul;18(7):298-307. doi: 10.1016/j.tim.2010.03.008. Epub 2010 Apr 19.
10
Consumption of human milk oligosaccharides by gut-related microbes.
J Agric Food Chem. 2010 May 12;58(9):5334-40. doi: 10.1021/jf9044205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验