Suppr超能文献

通过声化学方法将银纳米颗粒沉积在载玻片上或载玻片内。

Depositing silver nanoparticles on/in a glass slide by the sonochemical method.

作者信息

Perkas Nina, Amirian Galina, Applerot Guy, Efendiev Eldar, Kaganovskii Yuri, Ghule Anil Vithal, Chen Bo-Jung, Ling Yong-Chien, Gedanken Aharon

机构信息

Department of Chemistry, Kanbar Laboratory for Nanomaterials, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.

出版信息

Nanotechnology. 2008 Oct 29;19(43):435604. doi: 10.1088/0957-4484/19/43/435604. Epub 2008 Sep 22.

Abstract

A glass substrate was coated with silver by ultrasound irradiation. The structure and morphology of the nanoparticles in the deposited film were characterized using methods such as XRD, TEM, HR TEM, HRSEM, AFM, TOF-SIMS and optical spectroscopy. It was demonstrated that nucleation and the ensuing growth of the nanoparticles occurs in solution and is influenced by the concentration of the precursor, temperature and time of sonication. TOF-SIMS measurements revealed that silver nanoparticles passed through the glass interface and diffused within the glass substrate up to ∼60 nm. An analysis of the thermal effects accompanying the sonochemical cavitation of micro-bubbles in the solution near the solid surfaces shows that the collision of nanoparticles can lead to their melting and coalescence. Sonochemical deposition takes place layer by layer, so that the completion of the deposition of each layer of nanoparticles is followed by the sintering of adjacent particles and the formation of a close-packed layer. Using PVP as a stabilizing agent, a monolayer coating of silver nanoparticles on the glass surface was obtained. The coated glass demonstrated antibacterial activity.

摘要

通过超声辐照在玻璃基板上涂覆银。使用XRD、TEM、HR TEM、HRSEM、AFM、TOF-SIMS和光谱学等方法对沉积膜中纳米颗粒的结构和形态进行了表征。结果表明,纳米颗粒的成核及随后的生长发生在溶液中,并受前驱体浓度、温度和超声处理时间的影响。TOF-SIMS测量表明,银纳米颗粒穿过玻璃界面并在玻璃基板内扩散至约60纳米。对固体表面附近溶液中微泡声化学空化伴随的热效应分析表明,纳米颗粒的碰撞会导致其熔化和聚结。声化学沉积逐层进行,因此每一层纳米颗粒沉积完成后,相邻颗粒会烧结并形成紧密堆积层。使用聚乙烯吡咯烷酮(PVP)作为稳定剂,在玻璃表面获得了银纳米颗粒的单层涂层。涂覆后的玻璃表现出抗菌活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验