Core for Translational Research in Imaging, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Neuroimage. 2012 Jan 2;59(1):467-77. doi: 10.1016/j.neuroimage.2011.07.050. Epub 2011 Jul 30.
Diffusion Kurtosis Imaging (DKI) provides quantifiable information on the non-Gaussian behavior of water diffusion in biological tissue. Changes in water diffusion tensor imaging (DTI) parameters and DKI parameters in several white and gray matter regions were investigated in a mild controlled cortical impact (CCI) injury rat model at both the acute (2 h) and the sub-acute (7 days) stages following injury. Mixed model ANOVA analysis revealed significant changes in temporal patterns of both DTI and DKI parameters in the cortex, hippocampus, external capsule and corpus callosum. Post-hoc tests indicated acute changes in mean diffusivity (MD) in the bilateral cortex and hippocampus (p<0.0005) and fractional anisotropy (FA) in ipsilateral cortex (p<0.0005), hippocampus (p=0.014), corpus callosum (p=0.031) and contralateral external capsule (p=0.011). These changes returned to baseline by the sub-acute stage. However, mean kurtosis (MK) was significantly elevated at the sub-acute stages in all ipsilateral regions and scaled inversely with the distance from the impacted site (cortex and corpus callosum: p<0.0005; external capsule: p=0.003; hippocampus: p=0.011). Further, at the sub-acute stage increased MK was also observed in the contralateral regions compared to baseline (cortex: p=0.032; hippocampus: p=0.039) while no change was observed with MD and FA. An increase in mean kurtosis was associated with increased reactive astrogliosis from immunohistochemistry analysis. Our results suggest that DKI is sensitive to microstructural changes associated with reactive astrogliosis which may be missed by standard DTI parameters alone. Monitoring changes in MK allows the investigation of molecular and morphological changes in vivo due to reactive astrogliosis and may complement information available from standard DTI parameters. To date the use of diffusion tensor imaging has been limited to study changes in white matter integrity following traumatic insults. Given the sensitivity of DKI to detect microstructural changes even in the gray matter in vivo, allows the extension of the technique to understand patho-morphological changes in the whole brain following a traumatic insult.
扩散峰度成像(DKI)可提供生物组织中水分子扩散的非高斯行为的定量信息。在轻度控制性皮质撞击(CCI)损伤大鼠模型中,在损伤后 2 小时(急性期)和 7 天(亚急性期),研究了几个白质和灰质区域的水扩散张量成像(DTI)参数和 DKI 参数的变化。混合模型方差分析显示,皮质、海马体、外囊和胼胝体的 DTI 和 DKI 参数的时间模式均发生显著变化。事后检验表明,双侧皮质和海马体的平均弥散度(MD)(p<0.0005)和同侧皮质的各向异性分数(FA)(p<0.0005)、海马体(p=0.014)、胼胝体(p=0.031)和对侧外囊(p=0.011)均发生急性变化。这些变化在亚急性期恢复到基线。然而,在所有同侧区域,MK 在亚急性期均显著升高,且与撞击部位的距离呈反比(皮质和胼胝体:p<0.0005;外囊:p=0.003;海马体:p=0.011)。此外,与基线相比,亚急性期对侧区域的 MK 也增加(皮质:p=0.032;海马体:p=0.039),而 MD 和 FA 无变化。免疫组织化学分析显示,MK 的增加与反应性星形胶质增生有关。我们的结果表明,DKI 对与反应性星形胶质增生相关的微观结构变化敏感,而标准 DTI 参数可能会忽略这些变化。监测 MK 的变化可以研究由于反应性星形胶质增生而导致的体内分子和形态变化,并可补充标准 DTI 参数提供的信息。迄今为止,扩散张量成像的应用仅限于研究创伤后白质完整性的变化。由于 DKI 对活体灰质量微结构变化的敏感性,该技术可扩展用于理解创伤后整个大脑的病理形态变化。