Suppr超能文献

使用加权邦费罗尼法、西姆斯法或参数检验进行多重比较程序的图形方法。

Graphical approaches for multiple comparison procedures using weighted Bonferroni, Simes, or parametric tests.

作者信息

Bretz Frank, Posch Martin, Glimm Ekkehard, Klinglmueller Florian, Maurer Willi, Rohmeyer Kornelius

机构信息

Statistical Methodology, Novartis Pharma AG, Basel, Switzerland.

出版信息

Biom J. 2011 Nov;53(6):894-913. doi: 10.1002/bimj.201000239. Epub 2011 Aug 12.

Abstract

The confirmatory analysis of pre-specified multiple hypotheses has become common in pivotal clinical trials. In the recent past multiple test procedures have been developed that reflect the relative importance of different study objectives, such as fixed sequence, fallback, and gatekeeping procedures. In addition, graphical approaches have been proposed that facilitate the visualization and communication of Bonferroni-based closed test procedures for common multiple test problems, such as comparing several treatments with a control, assessing the benefit of a new drug for more than one endpoint, combined non-inferiority and superiority testing, or testing a treatment at different dose levels in an overall and a subpopulation. In this paper, we focus on extended graphical approaches by dissociating the underlying weighting strategy from the employed test procedure. This allows one to first derive suitable weighting strategies that reflect the given study objectives and subsequently apply appropriate test procedures, such as weighted Bonferroni tests, weighted parametric tests accounting for the correlation between the test statistics, or weighted Simes tests. We illustrate the extended graphical approaches with several examples. In addition, we describe briefly the gMCP package in R, which implements some of the methods described in this paper.

摘要

预先指定的多个假设的验证性分析在关键临床试验中已变得很常见。最近已经开发出多种检验程序,这些程序反映了不同研究目标的相对重要性,例如固定顺序、后备和把关程序。此外,还提出了图形方法,便于对常见的多重检验问题进行基于邦费罗尼的封闭检验程序的可视化和交流,例如将几种治疗方法与对照进行比较、评估一种新药对多个终点的益处、联合非劣效性和优效性检验,或在总体人群和亚组中对不同剂量水平的治疗方法进行检验。在本文中,我们通过将潜在的加权策略与所采用的检验程序分离,专注于扩展的图形方法。这使得人们能够首先得出反映给定研究目标的合适加权策略,随后应用适当的检验程序,如加权邦费罗尼检验、考虑检验统计量之间相关性的加权参数检验或加权西姆斯检验。我们用几个例子说明了扩展的图形方法。此外,我们简要描述了R语言中的gMCP包,它实现了本文中描述的一些方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8f4/3427907/04f3481bc4d3/bimj0053-0894-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验