Laboratoire des Sciences du Climat et de l'Environnement, Centre National de Recherche Scientifique/Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France.
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14769-74. doi: 10.1073/pnas.1103910108. Epub 2011 Aug 18.
Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH(4) emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO(2) by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO(2) fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH(4)/y to 41-70 Tg CH(4)/y, with increases due to CO(2) fertilization, permafrost thaw, and warming-induced increased CH(4) flux densities partially offset by a reduction in wetland extent.
多年冻土土壤中含有大量的有机碳,如果随着气候变暖,呼吸作用增强,这可能成为全球气候变化的一个正反馈。我们使用了一个包含多年冻土碳动态、冻结土壤层呼吸抑制、土壤碳从表层到多年冻土层的垂直混合以及从淹没地区排放的 CH4 的陆地生态系统模型,该模型与新的环极土壤碳储量清单更匹配,以探索高纬度地区碳-气候反馈的潜力。与政府间气候变化专门委员会第四次评估报告(IPCC AR4)的模型结果相反,当包含多年冻土过程时,在 SRES A2 气候变化情景的强迫下,到 21 世纪末,北纬 60°以北的陆地生态系统可能从 CO2 汇转变为源。在 1860 年至 2100 年期间,模型对 CO2 施肥和气候变化的综合响应从 68 Pg 的汇变为 27 + -7 Pg 的汇到 4 + -18 Pg 的源,这取决于所使用的过程和参数值。由于气候变化而引起的碳综合变化从接近于零(这在以前的模型估计范围内)转变为生态系统因气候引起的碳损失,范围在 25 + -3 到 85 + -16 Pg C 之间,这取决于模型中包含的过程,最佳估计值为 62 + -7 Pg C 的损失。高纬度地区的甲烷排放量预计将从 34 Tg CH4/y 增加到 41-70 Tg CH4/y,由于 CO2 施肥、多年冻土融化以及变暖引起的 CH4 通量密度增加,湿地面积减少部分抵消了甲烷排放量的增加。