Suppr超能文献

胚外内胚层干细胞分化的调控由 Nodal 和 Cripto 信号通路完成。

Regulation of extra-embryonic endoderm stem cell differentiation by Nodal and Cripto signaling.

机构信息

Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.

出版信息

Development. 2011 Sep;138(18):3885-95. doi: 10.1242/dev.065656.

Abstract

The signaling pathway for Nodal, a ligand of the TGFβ superfamily, plays a central role in regulating the differentiation and/or maintenance of stem cell types that can be derived from the peri-implantation mouse embryo. Extra-embryonic endoderm stem (XEN) cells resemble the primitive endoderm of the blastocyst, which normally gives rise to the parietal and the visceral endoderm in vivo, but XEN cells do not contribute efficiently to the visceral endoderm in chimeric embryos. We have found that XEN cells treated with Nodal or Cripto (Tdgf1), an EGF-CFC co-receptor for Nodal, display upregulation of markers for visceral endoderm as well as anterior visceral endoderm (AVE), and can contribute to visceral endoderm and AVE in chimeric embryos. In culture, XEN cells do not express Cripto, but do express the related EGF-CFC co-receptor Cryptic (Cfc1), and require Cryptic for Nodal signaling. Notably, the response to Nodal is inhibited by the Alk4/Alk5/Alk7 inhibitor SB431542, but the response to Cripto is unaffected, suggesting that the activity of Cripto is at least partially independent of type I receptor kinase activity. Gene set enrichment analysis of genome-wide expression signatures generated from XEN cells under these treatment conditions confirmed the differing responses of Nodal- and Cripto-treated XEN cells to SB431542. Our findings define distinct pathways for Nodal and Cripto in the differentiation of visceral endoderm and AVE from XEN cells and provide new insights into the specification of these cell types in vivo.

摘要

Nodal 是 TGFβ 超家族的配体,其信号通路在调节多能干细胞的分化和/或维持中起着核心作用,这些多能干细胞可源自植入前小鼠胚胎。胚外内胚层干细胞(XEN)类似于囊胚的原始内胚层,正常情况下在体内产生壁内胚层和内脏内胚层,但 XEN 细胞在嵌合胚胎中不能有效地产生内脏内胚层。我们发现,用 Nodal 或 Cripto(Tdgf1)处理的 XEN 细胞,即 Nodal 的 EGF-CFC 共受体,会上调内脏内胚层和前内脏内胚层(AVE)的标志物,并能在嵌合胚胎中形成内脏内胚层和 AVE。在培养中,XEN 细胞不表达 Cripto,但表达相关的 EGF-CFC 共受体 Cryptic(Cfc1),并需要 Cryptic 来进行 Nodal 信号转导。值得注意的是,Nodal 的反应受到 Alk4/Alk5/Alk7 抑制剂 SB431542 的抑制,但 Cripto 的反应不受影响,这表明 Cripto 的活性至少部分独立于 I 型受体激酶活性。根据 XEN 细胞在这些处理条件下的全基因组表达谱生成的基因集富集分析,证实了 Nodal 和 Cripto 处理的 XEN 细胞对 SB431542 的不同反应。我们的研究结果定义了 Nodal 和 Cripto 在 XEN 细胞向内脏内胚层和 AVE 分化过程中的不同途径,并为这些细胞类型在体内的特化提供了新的见解。

相似文献

1
2
Functional redundancy of EGF-CFC genes in epiblast and extraembryonic patterning during early mouse embryogenesis.
Dev Biol. 2010 Jun 1;342(1):63-73. doi: 10.1016/j.ydbio.2010.03.009. Epub 2010 Mar 24.
3
Non-cell-autonomous role for Cripto in axial midline formation during vertebrate embryogenesis.
Development. 2005 Dec;132(24):5539-51. doi: 10.1242/dev.02157. Epub 2005 Nov 16.
4
Cripto-independent Nodal signaling promotes positioning of the A-P axis in the early mouse embryo.
Dev Biol. 2008 Mar 15;315(2):280-9. doi: 10.1016/j.ydbio.2007.12.027. Epub 2007 Dec 31.
5
Cripto localizes Nodal at the limiting membrane of early endosomes.
Sci Signal. 2008 Nov 11;1(45):ra13. doi: 10.1126/scisignal.1165027.
6
Cripto promotes A-P axis specification independently of its stimulatory effect on Nodal autoinduction.
J Cell Biol. 2008 Feb 11;180(3):597-605. doi: 10.1083/jcb.200709090.
7
The threonine that carries fucose, but not fucose, is required for Cripto to facilitate Nodal signaling.
J Biol Chem. 2007 Jul 13;282(28):20133-41. doi: 10.1074/jbc.M702593200. Epub 2007 May 15.
9
Cripto is required for mesoderm and endoderm cell allocation during mouse gastrulation.
Dev Biol. 2013 Sep 1;381(1):170-8. doi: 10.1016/j.ydbio.2013.05.029. Epub 2013 Jun 7.
10
BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm.
Dev Biol. 2012 Jan 1;361(1):90-102. doi: 10.1016/j.ydbio.2011.10.013. Epub 2011 Oct 14.

引用本文的文献

1
Heterotaxy polysplenia syndrome with cholangiopancreatic cancer: a case report and literature review.
Front Med (Lausanne). 2025 Jun 9;12:1537227. doi: 10.3389/fmed.2025.1537227. eCollection 2025.
4
Generation of Mouse Primitive Endoderm Stem Cells.
Bio Protoc. 2023 Nov 20;13(22):e4878. doi: 10.21769/BioProtoc.4878.
5
Highly efficient generation of blastocyst-like structures from spliceosomes-repressed mouse totipotent blastomere-like cells.
Sci China Life Sci. 2023 Mar;66(3):423-435. doi: 10.1007/s11427-022-2209-3. Epub 2023 Jan 10.
6
A pendulum of induction between the epiblast and extra-embryonic endoderm supports post-implantation progression.
Development. 2022 Oct 15;149(20). doi: 10.1242/dev.192310. Epub 2022 Aug 22.
8
Intrauterine hyperglycemia impairs endometrial receptivity via up-regulating SGK1 in diabetes.
Sci China Life Sci. 2022 Aug;65(8):1578-1589. doi: 10.1007/s11427-021-2035-2. Epub 2022 Mar 7.
10
New Insights into Cancer Targeted Therapy: Nodal and Cripto-1 as Attractive Candidates.
Int J Mol Sci. 2021 Jul 22;22(15):7838. doi: 10.3390/ijms22157838.

本文引用的文献

3
4
A role for PDGF signaling in expansion of the extra-embryonic endoderm lineage of the mouse blastocyst.
Development. 2010 Oct;137(20):3361-72. doi: 10.1242/dev.050864. Epub 2010 Sep 8.
5
A comparative analysis of extra-embryonic endoderm cell lines.
PLoS One. 2010 Aug 6;5(8):e12016. doi: 10.1371/journal.pone.0012016.
7
Functional redundancy of EGF-CFC genes in epiblast and extraembryonic patterning during early mouse embryogenesis.
Dev Biol. 2010 Jun 1;342(1):63-73. doi: 10.1016/j.ydbio.2010.03.009. Epub 2010 Mar 24.
8
Nodal morphogens.
Cold Spring Harb Perspect Biol. 2009 Nov;1(5):a003459. doi: 10.1101/cshperspect.a003459.
9
Enhancement of Notch receptor maturation and signaling sensitivity by Cripto-1.
J Cell Biol. 2009 Nov 2;187(3):343-53. doi: 10.1083/jcb.200905105.
10
Isolation of Oct4-expressing extraembryonic endoderm precursor cell lines.
PLoS One. 2009 Sep 28;4(9):e7216. doi: 10.1371/journal.pone.0007216.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验