Coopman K, Wallis R, Robb G, Brown A J H, Wilkinson G F, Timms D, Willars G B
Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom.
Mol Endocrinol. 2011 Oct;25(10):1804-18. doi: 10.1210/me.2011-1160. Epub 2011 Aug 25.
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9-39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9-39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.
胰高血糖素样肽-1(GLP-1)的C末端区域与GLP-1受体(GLP-1R)的N末端结合,促进配体N末端与受体跨膜结构域的相互作用。相比之下,激动剂艾塞那肽-4对跨膜结构域的依赖性较小,而截短的拮抗剂类似物(如艾塞那肽9-39)可能仅与受体N末端相互作用。在此,我们利用诱变技术来探究在哺乳动物GLP-1R预测的跨膜螺旋中高度保守且在B族G蛋白偶联受体中保守的残基在配体结合和GLP-1R激活中的作用。通过反复利用诱变信息,以及受体N末端的现有晶体结构和活性视蛋白跨膜结构域的模型,我们构建了一个结合有GLP-1的受体结构模型,并利用该模型更好地理解突变的后果。Y152(跨膜螺旋(TM)1)、R190(TM2)、Y235(TM3)、H363(TM6)和E364(TM6)处的突变对GLP-1和艾塞那肽9-39的亲和力产生了类似程度的降低。相比之下,其他突变要么优先(K197(TM2)、Q234(TM3)和W284(细胞外环2))要么单独(D198(TM2)和R310(TM5))降低了GLP-1的亲和力。激动剂亲和力的降低总是伴随着效力的降低。然而,对于K197A、W284A和R310A,效力的降低超过了激动剂亲和力的降低,而H363A与cAMP生成解偶联,突出了这些残基在将结合转化为激活过程中的关键作用。数据表明GLP-1R跨膜结构域内保守残基在配体结合和受体激活中具有重要作用。受体结构模型为深入了解这些残基的作用提供了思路。