Suppr超能文献

胰高血糖素样肽-1受体跨膜结构域中参与配体结合和受体激活的残基:构建配体结合受体模型

Residues within the transmembrane domain of the glucagon-like peptide-1 receptor involved in ligand binding and receptor activation: modelling the ligand-bound receptor.

作者信息

Coopman K, Wallis R, Robb G, Brown A J H, Wilkinson G F, Timms D, Willars G B

机构信息

Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom.

出版信息

Mol Endocrinol. 2011 Oct;25(10):1804-18. doi: 10.1210/me.2011-1160. Epub 2011 Aug 25.

Abstract

The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9-39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9-39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.

摘要

胰高血糖素样肽-1(GLP-1)的C末端区域与GLP-1受体(GLP-1R)的N末端结合,促进配体N末端与受体跨膜结构域的相互作用。相比之下,激动剂艾塞那肽-4对跨膜结构域的依赖性较小,而截短的拮抗剂类似物(如艾塞那肽9-39)可能仅与受体N末端相互作用。在此,我们利用诱变技术来探究在哺乳动物GLP-1R预测的跨膜螺旋中高度保守且在B族G蛋白偶联受体中保守的残基在配体结合和GLP-1R激活中的作用。通过反复利用诱变信息,以及受体N末端的现有晶体结构和活性视蛋白跨膜结构域的模型,我们构建了一个结合有GLP-1的受体结构模型,并利用该模型更好地理解突变的后果。Y152(跨膜螺旋(TM)1)、R190(TM2)、Y235(TM3)、H363(TM6)和E364(TM6)处的突变对GLP-1和艾塞那肽9-39的亲和力产生了类似程度的降低。相比之下,其他突变要么优先(K197(TM2)、Q234(TM3)和W284(细胞外环2))要么单独(D198(TM2)和R310(TM5))降低了GLP-1的亲和力。激动剂亲和力的降低总是伴随着效力的降低。然而,对于K197A、W284A和R310A,效力的降低超过了激动剂亲和力的降低,而H363A与cAMP生成解偶联,突出了这些残基在将结合转化为激活过程中的关键作用。数据表明GLP-1R跨膜结构域内保守残基在配体结合和受体激活中具有重要作用。受体结构模型为深入了解这些残基的作用提供了思路。

相似文献

2
Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain.
J Biol Chem. 2008 Apr 25;283(17):11340-7. doi: 10.1074/jbc.M708740200. Epub 2008 Feb 20.
4
Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor.
J Biol Chem. 2010 Jan 1;285(1):723-30. doi: 10.1074/jbc.M109.033829. Epub 2009 Oct 27.
8
Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain.
PLoS One. 2014 Sep 2;9(9):e105683. doi: 10.1371/journal.pone.0105683. eCollection 2014.
9
Characterization of glucagon-like peptide-1 receptor-binding determinants.
J Mol Endocrinol. 2000 Dec;25(3):321-35. doi: 10.1677/jme.0.0250321.
10
Transmembrane α-helix 2 and 7 are important for small molecule-mediated activation of the GLP-1 receptor.
Pharmacology. 2011;88(5-6):340-8. doi: 10.1159/000334338. Epub 2011 Nov 30.

引用本文的文献

1
Effects of site-directed mutagenesis of GLP-1 and glucagon receptors on signal transduction activated by dual and triple agonists.
Acta Pharmacol Sin. 2023 Feb;44(2):421-433. doi: 10.1038/s41401-022-00962-y. Epub 2022 Aug 11.
3
A Paradigm for Peptide Hormone-GPCR Analyses.
Molecules. 2020 Sep 18;25(18):4272. doi: 10.3390/molecules25184272.
4
Two distinct domains of the glucagon-like peptide-1 receptor control peptide-mediated biased agonism.
J Biol Chem. 2018 Jun 15;293(24):9370-9387. doi: 10.1074/jbc.RA118.003278. Epub 2018 May 1.
5
Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex.
Nature. 2018 Mar 1;555(7694):121-125. doi: 10.1038/nature25773. Epub 2018 Feb 21.
6
Paralog-divergent Features May Help Reduce Off-target Effects of Drugs: Hints from Glucagon Subfamily Analysis.
Genomics Proteomics Bioinformatics. 2017 Aug;15(4):246-254. doi: 10.1016/j.gpb.2017.03.004. Epub 2017 Jun 20.
7
Crystal structure of the GLP-1 receptor bound to a peptide agonist.
Nature. 2017 Jun 8;546(7657):254-258. doi: 10.1038/nature22800. Epub 2017 May 31.
8
Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein.
Nature. 2017 Jun 8;546(7657):248-253. doi: 10.1038/nature22394. Epub 2017 May 24.

本文引用的文献

1
Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling.
J Biol Chem. 2011 May 6;286(18):15895-907. doi: 10.1074/jbc.M110.217901. Epub 2011 Mar 16.
2
Structure of a nanobody-stabilized active state of the β(2) adrenoceptor.
Nature. 2011 Jan 13;469(7329):175-80. doi: 10.1038/nature09648.
5
Role of the signal peptide in the synthesis and processing of the glucagon-like peptide-1 receptor.
Br J Pharmacol. 2010 Jan;159(1):237-51. doi: 10.1111/j.1476-5381.2009.00517.x. Epub 2009 Nov 27.
6
Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor.
J Biol Chem. 2010 Jan 1;285(1):723-30. doi: 10.1074/jbc.M109.033829. Epub 2009 Oct 27.
7
Molecular basis of glucagon-like peptide 1 docking to its intact receptor studied with carboxyl-terminal photolabile probes.
J Biol Chem. 2009 Dec 4;284(49):34135-44. doi: 10.1074/jbc.M109.038109. Epub 2009 Oct 8.
8
Passing the baton in class B GPCRs: peptide hormone activation via helix induction?
Trends Biochem Sci. 2009 Jun;34(6):303-10. doi: 10.1016/j.tibs.2009.02.004. Epub 2009 May 14.
9
PTH and PTH antagonist induce different conformational changes in the PTHR1 receptor.
J Bone Miner Res. 2009 May;24(5):925-34. doi: 10.1359/jbmr.081228.
10
Search for alpha-helical propensity in the receptor-bound conformation of glucagon-like peptide-1.
Bioorg Med Chem. 2008 Dec 1;16(23):10106-12. doi: 10.1016/j.bmc.2008.10.006. Epub 2008 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验