Suppr超能文献

高效实现模糊 c-均值聚类算法。

Efficient Implementation of the Fuzzy c-Means Clustering Algorithms.

机构信息

Department of Computer Science, University of South Carolina, Columbia, SC 29208.

出版信息

IEEE Trans Pattern Anal Mach Intell. 1986 Feb;8(2):248-55. doi: 10.1109/tpami.1986.4767778.

Abstract

This paper reports the results of a numerical comparison of two versions of the fuzzy c-means (FCM) clustering algorithms. In particular, we propose and exemplify an approximate fuzzy c-means (AFCM) implementation based upon replacing the necessary ``exact'' variates in the FCM equation with integer-valued or real-valued estimates. This approximation enables AFCM to exploit a lookup table approach for computing Euclidean distances and for exponentiation. The net effect of the proposed implementation is that CPU time during each iteration is reduced to approximately one sixth of the time required for a literal implementation of the algorithm, while apparently preserving the overall quality of terminal clusters produced. The two implementations are tested numerically on a nine-band digital image, and a pseudocode subroutine is given for the convenience of applications-oriented readers. Our results suggest that AFCM may be used to accelerate FCM processing whenever the feature space is comprised of tuples having a finite number of integer-valued coordinates.

摘要

本文报告了两种模糊 c-均值(FCM)聚类算法的数值比较结果。具体来说,我们提出并举例说明了一种基于用整数值或实数值估计值替换 FCM 方程中必要的“精确”变量的近似模糊 c-均值(AFCM)实现。这种近似使得 AFCM 能够利用查找表方法来计算欧几里得距离和指数。所提出的实现的净效果是,每次迭代的 CPU 时间减少到算法的文字实现所需时间的大约六分之一,而显然保留了生成的终端聚类的整体质量。这两种实现方法在一个九波段数字图像上进行了数值测试,并为面向应用的读者提供了一个伪代码子例程。我们的结果表明,只要特征空间由具有有限个整数值坐标的元组组成,AFCM 就可以用于加速 FCM 处理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验