Suppr超能文献

将田间观测、土壤建模和空气扩散算法相结合,估算 1,3-二氯丙烯和氯化苦的通量和暴露量。

Coupling field observations, soil modeling, and air dispersion algorithms to estimate 1,3-dichloropropene and chloropicrin flux and exposure.

机构信息

Dow AgroSciences, LLC, Indidanapolis, IN 46268, USA.

出版信息

J Environ Qual. 2011 Sep-Oct;40(5):1450-61. doi: 10.2134/jeq2010.0130.

Abstract

Soil fumigants are volatile compounds applied to agricultural land to control nematode populations, weeds, and crop diseases. Field trials used for measuring fumigant loss from soil to the atmosphere encompass only a small proportion of the near semi-infinite parameter combinations of environmental, agronomic, and meteorological conditions. One approach to supplement field observations uses a soil physics model for fumigant emission predictions. A model is first validated against existing field study observations and then used to extrapolate results to a wider range of edaphic and climatic conditions. This work compares field observations of 1,3-dichloropropene and chloropicrin emissions to predictions from the USDA soil model CHAIN_2D. Comparison between model predictions and field observations for a Florida and California study had values between 0.62 to 0.81 and 0.99 to 1.0 for discrete and cumulative emission flux, respectively. CHAIN_2D emission rates were then coupled to several USEPA air dispersion models (ISCST3, CALPUFF6) to extend emission estimates to near field air concentrations. CALPUFF6 predicted slightly higher 1-h maximum air concentrations than ISCST3 for the same source strength (26.2-36.0% for setbacks between 1 and 250 m from the field edge, respectively). A sensitivity analysis for the CHAIN_2D/ISCST3 coupled numerical system is provided, with several soil and irrigation parameters consistently the most sensitive. Changes in the depth of incorporation, tarp material, and initial soil water content illustrate the predicted impact to emission strength and resulting near-field air concentrations with reductions of cumulative emission loss from 8.1 to 71% and average 1-h maximum air concentration reductions between 6.2 and 41% depending on the mitigation strategy chosen. Additionally, a stochastic framework based on the published SOFEA system that couples variability in experiment, model sensitivity, and site specific attributes is outlined should regional air concentration estimates resulting from fumigant use be sought.

摘要

土壤熏蒸剂是挥发性化合物,施用于农田以控制线虫种群、杂草和作物病害。用于测量土壤向大气中损失熏蒸剂的田间试验仅涵盖环境、农艺和气象条件的近半无限参数组合的一小部分。一种补充田间观测的方法是使用土壤物理模型进行熏蒸剂排放预测。首先将模型与现有田间研究观测结果进行验证,然后将结果外推到更广泛的土壤和气候条件范围内。这项工作比较了 1,3-二氯丙烯和氯化苦排放的田间观测结果与美国农业部土壤模型 CHAIN_2D 的预测结果。佛罗里达州和加利福尼亚州研究的模型预测值与田间观测值之间的离散和累积排放通量分别为 0.62 至 0.81 和 0.99 至 1.0。然后,CHAIN_2D 排放率与几个 USEPA 空气扩散模型(ISCST3、CALPUFF6)耦合,将排放估算扩展到近场空气浓度。对于相同的源强(从田地边缘到 1 到 250 米的后退距离分别为 26.2-36.0%),CALPUFF6 预测的 1 小时最大空气浓度略高于 ISCST3。提供了对 CHAIN_2D/ISCST3 耦合数值系统的敏感性分析,其中几个土壤和灌溉参数始终最敏感。对整合深度、防水布材料和初始土壤含水量的变化进行了敏感性分析,说明了对排放强度和由此产生的近场空气浓度的预测影响,累积排放损失减少了 8.1%至 71%,平均 1 小时最大空气浓度减少了 6.2%至 41%,具体取决于所选择的缓解策略。此外,还概述了一种基于已发布的 SOFEA 系统的随机框架,该系统将实验、模型敏感性和特定于站点的属性的变异性结合在一起,如果需要估算熏蒸剂使用引起的区域空气浓度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验